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Previous papers [1-3] have described the use of Linear Predictive Coding for dmm
synthesis: this paper covers subsequent work performed. with particular emphasis
on the signals for driving a resonant drum model. Gaussian and Brownian noise are
used and 'these can be filtered and/or have the time envelope modified. The methods
for generating these is reviewed and results presented. with some comments on their
auditory performance.

W

Previous papers[1-3] looked at simple Linear Predictive Analysis and Synthesis of
acoustic drums. In that work, only the autocorrelation technique [4] for analysis was
used and very simple stimuli were adopted: these involved short and long bursts of
uniformly distributed pseudo-random noise. Another.pcrtinent featureof that work
was the extraction of the effective excitation signal. which is obtained by inverse
filtering of the original sound sample by the LPC model. Although that proved an
unfruitful method for driving the LPC drum models. examination of the excitation
sequences themselves have led to a better synthetic driving waveform.
approximately modelled by an exponentially decaying Gaussian noise sequence.
Furthermore. other noise sequences with different spectral properties. in particular.
Brownian noise. can also be used to give interesting synthesized drum sounds.

As well as the autocorrelation method. the covariance technique is used here. this
having the advantage that the data need not be windowed: comparisons are drawn
between the syntheses from the two methods. In the future other non-windowing
analysis techniques. such as the Burg algorithm [5] will also he examined.

Details of LPC analysis have appeared in [l~3] and will not be repeated here. but in
essence all LPC analysis techniques process a finite duration segment of a time
function to produce a set of filter coefficients (ail. The Fourier transform of this
filter is' a smoothed approximation to the data’s spectrum and the algorithm is
'fonnulated so that the error between the filter‘s spectrum and the signal's spectrum
is minimized. This error can be determined by the inverse filtering operation which
gives a second time sequence. which should be approximately noise-like and when
applied to the filter, will give-back the original data sequence.

More specifically. the-LPC algorithm approximates the spectrum by the filter
1

ARp(z) =*‘ (I)

H» Earth-i
i=1

by calculating the filter coefficients (at) from the time sequence s[n]. if this
sequence has the z transform S(z). then the error sequence e[n] (with z transform r»
E(z)) is obtained by processing 3(2) with the filter Ma) as ' _ .

5(1) = 5(1)“ + M1» (2) - ‘.'
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where

P

A(z) = Emu-i (3)
i=1

For a long (and meaningful) data sequence. this procedure is applied to consecutive
segmenls of the data: these may he overlapping. contiguous or disjoint. As applied to
drums which have a slowly changing spectrum over the duration of a beat. this
means that the non-stationary statistics of the signal are modelled by a sequence of
stationary filter coefficient sets. For rc-synthesis. the filter coefficients are changed
at regular appropriate intervals.

W

We new deal with the various alternatives available in regenerating drum sounds
from sequences of filler coefficient sets which have been obtained by analysis.
There are basically three degrees of freedom:- the type and duration of the input to
the model: the type of analysis algorithm used (autocorrelation. covariance. Burg
etc); and the number of output samples computed from each filter coefficient set:
these will all he discussed in turn. First though we will deal with the general
principles of resynlhesis. Equation (2) above can be rearranged as

stz) = Em (4)
1+ Zaan-i

i=1 '
whose inverse z transform gives the generating expression

P ,

' Sin] =c{n] + Zaiil-stn-il (5)
i=1

so each new output sample s[n] is calculated from a new input sample eln] and the
weighted contribution of p previous outputs: the weights are provided by.the filter
coefficients obtained from the analysis. The basic block diagram structure of this
algorithm is shown in figure 1. Every M output samples. the newest set of filter
coefficients is loaded into the filter and the operation continues. Note that although
the filter coefficients have changed, there is some memory of the earlier behaviour
of the synthesizer in the p stored values of previous outputs and this serves to
prevent discontinuities in the output sequence. ‘ -

Turning now to the stimulus to the filter. e[n]. it was previously stated that this might
be the error sequence obtained from inverse filtering of the original data sequence.
There are however a number of reasons not to use such a method. Firstly. one of thc
main aims of this work is to find new drum sounds. not simply to be able to exactly
recreate original sampled versions - thus there is little flexibility in using the error
sequence as the excitation. Second. examination of the error sequence shows that
whenever the analysis moves on to a new data segment. there is a sudden increase in q
the energy in the error. implying that the new model does not match the signal so
well at the onset of a new data sequence. and further that a slight amplitude
modulation of the synthesized sound will occur at these instants. The most important
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feature of the error sequence is that it is noise like with a decaying exponential
envelope and it is this feature that is of most use in designing excitation waveforms
for use with the synthetic drum algorithms.

In the previous work. noise had been used to some effect as the input waveform.
However this was simply long or short bursts of uniformly distributed pseudcr-
random noise as obtained from the standard random number generator available
with the C compiler in use. That has now been supplemented with a high quality
Gaussian pseudo-random number generator [6] which provides floating point
numbers with 30 bits of precision.

Not only is this Gaussian generator used 'raw‘ but it also provides the input to a
Brownian random number generator. which has also been used as an input signal.
Brownian noise [7] is the so-called random walk signal in which each new sample is
obtained as a random Gaussian displacement of the previous value. it is thus simply
generated by integrating a Gaussian random number sequence. and consequently

has a spectrum which rolls off as Elf. thereby providing strongly low-pass filtered

noise.

As well as both of these primary input sequences. further flexibility is provided by
an envelope function and a filter function which may be used in either order to post-
proeess the noise sequence. The envelope generator provides both exponential and
linear roll-off in the time domain. with control of the rate of roll-off and the length
of the sequence. it is also possibly to delay the onset of the decay by a number of
samples. The filtering operation is a standard FIR convolution algorithm. whichcan
use filters designed with any standard FIR design algorithm, such as those available
in [8].'

Examples of the enveloped Gaussian noise sequence and Brownian noise sequence are
given in figure 2. together with an example of an error sequenCe obtained by
inverse filtering. .

The second degree of freedom arises from the [actual analysis procedure used. There is
the choice of algorithm (autocorrelation. covariance. Burg and so on). the choice of
model order for each data segment (all data segments“ have the same duration model)
and the duration of each data segment. which is best expressed as the ratio of the data
segment length to the model order. The more often a new model is calculated.'the
more closely the set of models should follow the changing spectral stntcture of the
drum beat.

The final degree of freedom concerns the duration of each synthesized data segment
(ie how many samples are recreated for each model set). This may be the same
number used in the analysis. or it may be more or less. If more samples are produced
per model (filler coefficient) set than were used in the analysis. the effect is to slow
down the rate at which the tone of the dntm beat 'bends': if fewer samples are
produced. the rate of tone bend will increase. Thus we have defined a way to produce
new drum sounds from models laken from real drums.
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All the experiments were performed by simulation on a PC with math eo-proeessor

and drum samples were later replayed via a D5? card hosted in a PC, whose sole role
was to provide digital to analogue conversion. The simulations were written in
floating point precision in the C language. The covariance technique was used for
three different drum samples and the autocorrelation method used for only one of
them.

Initially three model orders were used in the analysis. 50. 100 and 200. each at three
different ratios of data segment length to model order (2. S and 10 - approximately -
viz. a xlO analysis of a 100 order model actually involves 1024 samples rather than
1000 and of a 50 order model would be 512 samples). Early resynlhcsis of 50 and 100
order models proved disappointing. in decaying very rapidly to zero. so that all
results presented here are based on 200 order models.

For the synthesis. thl’ee basic input signals were used:- 'raw’ Gaussian noise.
exponentially decaying Gaussian noise and 'raw' Brownian noise. Three lengths of
each type of stimulus were used. with t-ms values of 0.5 and OJ for the Gaussian
signals and also for the Gaussian input to the Brownian generator. Lengths of lot)
samples (-2.25 msccs). 200 (4.5 msccs) and 500 samples (9 msccs) were used for the

Gaussian signals; lengths of 500(9 msccs). mm (18 msccs) and 2000 samples (36
msccs) were used for the enveloped Gaussian and Brownian signals‘ The enveloped
signals were calculated to decay to 1% of their nns value by the end of the sequence

Three different original drum samples were used: ‘x‘. 'y' and ‘2'. All these were
sampled at 20 kHz. so that this is also the re-synthesis sampling frequency. The 'y'
beat is the only one analysed by both LPC algorithms and is shown in figure 3.

W .

It is desirable to use a longish excitation sequence to stimulate the drum model. but
using a long ‘raw' Gaussian sequence gives a rasping onset to the beat. it is therefore

often better to use an enveloped Gaussian sequence, so that energy is provided to the
system over an appreciable period to continue stimulating the model. Using a
sequence which decays to negligible levels after about 1000 samples (ie about 50
msccs) seems to provide good results. The longer this sequence. the more the higher

frequency modes of the resonant model are stimulated. Interestingly, the response of
the models obtained with an autocorrclation algorithm were different to those
obtained by a covariance algorithm and they always sound much more realistic and
lively, when all other variables in analysis and synthesis are kept the same.

For example, providing 200 samples of Gaussian noise to the covariance model gives a
'ehock' sound. reminiscent of a rim-shot (ie very little clearly discernible
resonance) whereas the skin can very definitely be heard to ‘sing' when usirig the
autocorrelation derived model. These beats are shown in figure 4 a k b. in general
the autocorrelation model always needed far less .energy to stimulate it and the pitch

Proc.I.O.A. Vol 12 Part B (1990)

 



 

Proceedings of the Institute of Acoustics

Flexible Resynthesis of Acoustic Drums

bend. characteristic of drums as the deformed skin returns to its rest position. is
much better reproduced.

The same conclusion holds when the model is stimulated with enveloped Gaussian
noise. though the .covariance model produces a more convincing result when driving-
it with this longer. damped sequence. Examples of 'the output obtained are given in
figure 4 c&d for the autocorrelation model and the covariance model respectively.
The advantage of this method of stimulus is that it allows a large amount of energy to
be input to the drum model. without over—driving it.

The ‘x' and ‘1' models, both of which were obtained only from a covariance analysis
were much better than the 'y' model counterparts - example plots are not shown
here for reasons of space. Clearly the issue of which analysis technique to use is not
a simple one and depends on the actual original drum sample. Since autocorrelation
analyses of the ‘x' and ‘2' models was not performed. no full conclusion can be drawn
here. except to say that the pitch change of the autocorrelation ‘y‘ models was still

.bettcr than that of the covariance analyses of the other drums. so it is likely that for
these drums also. the autocorrelation algorithm will provide a better model than the
covariance algorithm.

Brownian noise puts significant low frequency energy and little high frequency
energy into the system. Listening to this, the sound is similar to striking a dmm with
a soft beater. which makes intuitive sense. as a heater is unlikely to impart much
high frequency energy. Examples are shown in figure 4e&f. Once again the
autoeorrclation and covariance derived models performed qualitatively differently:
again the changing pitch over the boat's duration is clearly discernible and the
whole sound is more lively with an autocorrelation model.

When longer Brownian sequences (2000 input samples) were used. a double beat
effect is observed as shown and this can be connected with the slowly changing dc
level of the Brownian sequence. The auditory effect of the use of Brownian noise will
depend much more strongly on a particular sequence. whereas as any Gaussian
sequence longer than just a few samples will be broadly the same. Thus for funher
flcxibility_in rcsynthcsis. a number of different Brownian sequences could be ‘
availablcugcncrated from Gaussian sequences with different seeds to the generator.

Considering now the use of different amounts of synthesised samples per model set
(stretching and shrinking the drum beats). see figure 4g&h for example, which show
a stretched by 2 (a) and a shrunk by two version of 4d. It was much harder to hear
the effect with the covariance models than was the ease for the autocorrelation
model. for which the pitch change is clearly evident - when shrinking the dntm by
producing fewer samples per model set. the pitch reduction is greater than when
stretching it. it is also clear that changing the model set more rapidly keeps the
resonant system ‘live'. the response rings on much more than the standard
resynthesis. It also exhibits the complicated resonant structure of the original dmm
beat.

Changing the mode of stimulus to an LPC encoded dmm sound gives a wide variety of
sonic options. if the energy and/or duration of say an exponentially decaying
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Gaussian stimulus is varied. this provides a subtle variation of sounds. consistent with

a drummer striking his drum in slightly different ways, To give a degree of realism.

these energy and duration parameters may be varied in some random way if a drum

machine is being used or might be under user control. say by being influenced by

the force or position of strike on a synthetic drum pad. The drummer may similarly

simply change to effectively using soft heaters by changing the stimulus to a

Brownian noise sequence. "

Changing the number of samples reproduced per model set also has a subtle effect.

which is most prominent when using Brownian noise as the stimulus. The difference

is a slight change of pitch. as expected, The difference is best detected when a

synthetic drum with double the normal number of samples per coefficient set is

alternated with one reproduced with half the normal number — the latter has the

lower pitch. The difference is likely to be more marked if say four or eight times the

normal number (equivalently a quarter or an eighth the number) of samples are

produced per coefficient set. but this was not tested.

Overall. the results were slightly disappointing in one respect. which is that the

resonances were still much more damped than in the original drum samples.

especially with the non-windowing covariance technique. There are some possible

measures to take to alleviate this. such as performing the analysis ever the same

number of samples (cg over 2048 samples for a 200 order model) but overlapping the

data. thereby providing more coefficient scts per drum beat and also reducing the

data compression achieved.

Quantum:

Interesting sounds can be created with a wide degree of variety from a single LPC

encoded drum sample which also offers significant data compression possibilities

compared to sampling techniques. though obviously with the added computational

burden of recreating the samples. This flexibility should be incorporated into user

interfaces for synthetic drum kits.

How good the synthesised samples are depends very strongly on how the analysis was

perforrncdjn the first place. with the autocorrelation algorithm standing out as the

better of the two techniques. Since there are many different algorithms for _

obtaining LPC models. further investigation is needed into the subject of the analysis

algorithm. It may prove in the long term that each algorithm has its own interesting

features and that the user of the synthetic drum kit of the future will be able to

experiment with these.

This paper lias only really scratched the surfaee of the problem of synthesising

drums from LPC models - there is still a great deal of experimentation that could be

done. Furthermore. these same techniques could be applied to the analysis and

synthesis of other instruments. perhaps starting with piano strings. which are also

struck. but in the future extending to all other acoustic instruments. '

Barnum
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Figure l: LPC synthesis showing filter coefficients

     
Figure 2a: Error sequence generated by Figure. 2b: Enveloped Gaussian random

inverse filtering number sequence        

     

   

Figure 2c: Brownian 'random number Figure 3: Original Drum ‘y'.
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h): 500 samples of enveloped Gaussian

noise. "double" samples per coefficienl noise. "half" samples per coefficient scl
scl - stretched - squashed

Figure 4:Drum resynlhesis with various paramclers
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