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Abstract

Previous papers [1-3] have described the usc of Lincar Predictive Coding for drum
synthesis: this paper covers subscquent work performed, with particular cmphasis
on the signals for driving a rcsonant drum model. Gaussian and Brownian noise arc
used and these can be filicred andfor have the time cnvelope modified. The methods
for gencrating these is rovicwed and results presented, with some comments on their
auditory performance.

lutroduction

Previous papers [1-3) looked at simple Lincar Predictive Analysis and Synthesis of
acoustic drums. In that work, only the autocorrelation technique [4] for analysis was
uscd and very simplc stimuli were adopted: these involved short and long bursts of
uniformly distribuicd pscudo-random noise, Another . pertineni feature - of thal work
wis the exiraction of the cffective cacitation signal, which is obtained by inversc
filtering ‘of the original sound sample by the LPC modecl. Although that proved an
unflruitful mcthod for driving the LPC drum modeis, cxamination of the excilation
scquences themscives have led to a  better synthetic driving waveform,
approximatcly modelled by an cxponentially decaying Gaussian noisc sequence,
Furthermore, other noise scquences with diffcrent spectral propertics, in particular,
Brownian noise, can also bc used to give intcresting synthesized drum sounds.

As well as the autocorrclation method. the covariance icchaique is used here, this
having the advantage that the dala nced not be windowed: comparisons are drawn
between the syntheses from the two methods. In the future other non-windowing
analysis tcchniques, such as the Burg algorithm [5] will also be examined.

Details of LPC analysis have appeared in [1-3] and will not be repeated here, but in
essence all LPC analysis techniques process a finilc duration scgment of a Lime
function to producc a set of filicr cocfficicnts {a;}., The Fourier transform of this
filter is" a smoothed approximation to the data’s spectrum and the algorithm is
Tormulated s0 that the crror between the filter's specirum and the sigral's spectrum
is minimized. This crror can be determined by 1he inverse filicring operation which
gives a sccond time sequence, which should be approximately noisc-like and when
applied to the filier, will give-back the original data scquence. '

More specifically, the LPC algorithm approximates the spectrum by the filter

ARp(z) = ‘—'1——‘ {n

P
1+ 2afi].z-i
i=1

by calculating ihe filter coclficicnts (a;) from the time scquence s[n). I this
scquence has the z transform S5(z), then the crror scquence c[n] (with z transform
E(z)) is obtained by processing S(z) with the filter A(z) as

E(z) = S(z).(1 + A(z)) {2)
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where

P
Alz) = Dalilz-i (3)

i=1

For a long (and mcaningful) dala sequence, this procedure is applicd o conscculive
scgments of the data: thesc may be overlapping. contiguous or disjoint. As. applicd to
drums which have a slowly changing spectrum over the duration of a beat, this
means that the non-stationary statistics of the signal are modelled by a sequence of
stationary filler cocfficient scts. For rc-synthesis, the filier coefficients are changed
at rcgular appropriatc intervals,

LEC Synthests

We now deal with the varicus alternatives available in regencrating drum sounds
from scquences of [ilter cocflicicnt scis which have been obtained by analysis.
There are basically three degrees of freedom:- the lype and duration of the inpul to
the model; the typc of analysis algorithm uscd (autecorrelation, covariance, Burg
ctc.); and the number of outpul samples computed from each filter coclficicnt set:
these will all be discussed in wum, First though we will deal with the gencral
principles of resynthesis. Equation (2) above can bec rcarranged as

1
Sy =E@) (4)
1+ Za[i].z'i
i=1 :
whosc inverse z transform gives the generating cxpression

P .
' s{n] = ¢[n] + Yali].s[n-i] {5)

i=1
so cach new oulput sample s[n] is calculated from a ncw input sampic ¢[n] and the
weighted contribution of p previous outputs: the weights are provided by. the filter
cocflicicnls obtained from the analysis. The basic block diagram structurc of this
algorithm is shown in figure 1. Every M oulput samplcs, the newest sct of filier
cocflicients is loaded inlo the filler and the operation continues. Nole that although
the filter cocfficients have changed, there is some memory of the carlier behaviour
of the synthesizer in the p storcd valucs of previous oulpuis and this serves lo
prevent discontinuitics in the oulput scquence. ©o

Tuming now 1o the stimulus to the filter, ¢[n], it was previously statcd that this might
be the error scquence obiained from inverse [filtering of the original data scquence.
There arc however a number of .reasons nol 1o usc such a method, Firstly, onc of the
main gims of this work is to find new drum sounds, nol simply (0 be able 1o cxaculy
recreate original sampled versions - thus there is linde Rexibility in using the crror
scquence as Lhe excitation, Sccond, examination of the crror scquence shows that
whenever the analysis moves on 1o a new data scgment, there is a sudden increase in :
the cnergy in the crror, implying that the new model docs not match the signal so
well at the onsct of a new data sequence, and further that a slight amplitude
modulation of the synthesized sound will occur at these instants. The most imporiant
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feaure of the crror sequence is that it is noisc like with a decaying cxponcntial
envelope and it is this feature that is of most usc in designing excilation wavelorms
for use with the synthclic drum algorithms.

In the previous work, neisc had been used 10 some clfecl as the input wavelorm,
Howcver this was simply long or shont bursis of uniformly distributed pscudo-
random nois¢ as obtained [from the siandard random number generator available
with the 'C compiler in usc. That has now been supplemented with a high quality
Gaussian pscudo-random numbcer gencrator [6] which provides floating point
numbers with 30 bits of precision,

Not only is this Gaussian gencrator used ‘raw’ but it also provides the input 10 a
Brownian random numbcr gencrator, which has also been used as an input signal.
Brownian noisc [7] is the so-called random walk signal in which cach new sample is
obtained as a random Gaussian displaccment of the previous value. Il is thus simply
gencratcd by intcgrating a Gaussian random number scquence, and conscquently

has a spectrum which roils off as }'li'. thereby providing strongly loprass fillered

noisc.

As well as both of thesc primary input scquences, fumther fexibility is provided by
an cnvclope [unction and a filicr function which may be used in cither order 10 post-
process the noise scquence. The envelope gencvator provides both exponential and
lincar rofl-off in the lime domain, with control of the rate of roll-off and the length
of the sequence. It is also possibly to delay the onsel of thc decay by a number of
samples. The [fillcring operation is a standard FIR convolution algorithm, which - can
us¢ filters designed with any standard FIR design algorithm, such as those available
in [8]).

Examples of the cnvcloped Gaussian noisc scquence and Brownian noisc sequence  arc
given in figurc 2, togelher with an cxample of an crror sequence oblained by
inverse [liltering. .

The sccond degree of frecdom arises from the actual analysis procedure used. There is
the choice of algorithm (autocorrelation, covariance, Burg and so on), the choice of
model order for cach data scgment (all data scgments” have the same duration modcl)
and thc duration of cach data scgmeni, which is best expresscd as the ratio of the data
scgmenl length to the model order. The more oficn a new model is calculaled, the
morc closcly the sct of modcls should follow the changing spectral structure of the
drum beat.

The linal degree of frecdom concerns the duration of cach synthesized data scgment
(ic how many samples arc recrcated for cach model set). This may be the same

number used in the analysis, or il may bc morc or less. If morc samples are produced
per model (filler coefficient) sct than were uscd in the analysis, the cffcct is 1o slow
down the ratc at which the tonc of the drum beat °bends’: if fewer samples arc

produccd, the rate of tonc bend will increase. Thus we have defincd a way 1o produce
ncw drum sounds from models taken from real drums.
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Experiments

All the cxperiments were performed by simulation on a PC with math co-processor
and drum samples werce later replayed via a DSP card hosied in a PC, whose sole role
was to provide digital to analogue conversion. The simulalions werc written in
floating poinm precision in the C language. The covariance iechnique was used for
three different drum samples and the auslocorrclation method used for only one of
them.

Initially threc model orders were used in the analysis, 50, 100 and 200, cach at three
different ratios of data scgment length to model order (2, 5 and 10 - approximately -
viz. 2 x10 analysis of a 100 order modcl actually involves 1024 samples rather than
1000 and of a 50 order model would be 512 samples). Early resynthesis of 50 and 100
order models proved disappointing, in decaying very rapidly te zcro, so that all
results presenied here arc based on 200 order modcls.

For the synthesis, thice basic input signals were used:- ‘raw’ Gaussian noisc,
cxponcntially decaying Gaussian noisc and ‘raw’ Brownian noise. Three lengths of
cach typc ol stimulus were used, with rms valucs of 0.5 and 0.1 for the Gaussian
signals and also [or the Gaussian input to the Brownian generator. Lengths of 100
samples {=2.25 msccs), 200 (4.5 msecs) and 500 samples (9 msecs) were used for the
Gaussian signals; lengihs of 500 .(9 msccs), 1000 (18 msccs) and 2000 samples (36
msecs) were used for the cenveloped Gaussian and Brownian signals, The cnveloped
signals were calculaicd 1o decay to 1% of their rms value by the e¢nd of the scquence

Three differcnt original drum samples were used: ‘x’, 'y’ and ‘z'. All these were
sampled at 20 kHz, so that this is also the re-synthesis sampling [requency. The 'y’
beat is the only onc analysed by both LPC algorithms and is shown in figurc 3.

Hesulls' and Discusslon .

It is dcsirable 10 usc a longish cxcitation sequence to stimulate the drum model, but
using a long ‘raw’ Gaussian scquence gives a rasping onsct 10 the beat. 1L is therefore
often beticr 1o usc an enveloped Gaussian sequence, so thal encrgy is provided 1o the
system over an appreciable period to continue stimulating the moedcel. Using a-
sequence which decays 1o negligible levels afier about 1000 samples (ic about 50
msccs) seems to provide good results. The loager this scquence, the more the higher
frcquency modcs of the resonant modcl are stimulated. Intercstingly, the responsc of
the models obtaincd with an autocorrelation algorithm were dilferent o those
obtaincd by a covariance algorithm and they always sound much more realislic and
lively, when all other variables in analysis and synthesis arc kept the same.

For cxample, providing 200 samples of Gaussian noisc to Lhe covariance model gives a
~‘chock” sound, reminiscent of a rim-shot {ic very little clearly disccmible
rcsonance) whereas the skin can very definitely be heard 1o ‘sing' when using the
autocorrelation derived model. These beats arc shown in figure 4 a & b. In general
the autocorrglation model always nceded lar less cnergy to stimulate it and the pitch
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bend, characteristic of drums as the dcformed skin returns o its resi position, is
much betier reproduced.

The samc conclusion holds when the model is stimulated with envcloped Gaussian
noisc, though the .covariance modec! produces a more convincing resull when driving -
it with this longer, damped sequence. Examples of ‘the output obtained are given in
figurc 4 c&d for the aulocorrclation modcl and the covariance model respeclively.

The advantage of this method of stimulus is that it allows a large amount of cncrgy 1o
be inpul to the drum modcl, without over-driving il

The ‘x* and ‘2’ models, both of which were obtained only from a covariance analysis
were much better than the 'y' model counterpants - cxample plots arc not shown
here for reasons of space. Clearly the issue of which analysis techaique to use is not
a simple onc and depends on the actual original drum sample. Since aulocorrclation
amalyses of thc 'x’ and 'z’ models was not performed, no full conclusion can be drawn
hcre, cxcept to say that the pitch change of the awiocorrelation ‘y' models was still
.better than that of the covariance analyses of the other drums, so it is likely that for
these drums also, the autocorrclation algorithm will provide a beucr model than the
covariance algorithm.

Brownian noise puts significant low frequency cnergy and liule high frequency
encrgy into the sysicm. Listening to this, the sound is similar to striking a drum with
4 soft bcaier, which makes intuilive sensc, as a beater is unlikely Io impant much
high frequency cnergy. Examples arc shown in figure 4c&f. Once again the
autocorrclation and covariance derived models performed  qualitatively  differently;
again the changing pitch over the beat’s duration is clearly disccrnible and the
whole sound is morc lively with an autocorrelation model.

When longer Brownian sequences (2000 input samples) were wsed, a double beat
effect is obscrved as shown and this can be connected with the slowly changing dc
level of the Brownian scquence. The auditory effcct of the use of Brownian noise will
depend much morc- strongly on a particular scquence, whereas as any Gaussian
scquence longer than just a few samples will be broadly the samc. Thus for (urther
flcxibilily in resynthesis, a pumber of different Brownian sequences could be
available, - gencrated from Gaussian scquences with different seeds to the gencrator.

Considering now the use of different amounts of synthesised samples per model set
(strciching and shrinking (he drum beats), sce figurc 4g&h for cxample, which show
a sirciched by 2 (a} and a shrunk by two version of 4d. [t was much harder to hear
the effcct with the covariance models than was the casec for the aulocorrclation
madel, for which the pich change is clearly evideat - when shrinking the drum by
producing fewer samples per model sct, the pitch reduction is greater than when
streiching it. It is also clear that changing the model sct more rapidly kecps 1he
resonant sysiem ‘live’. the response rings on much morc than the standard
resynthesis. It also cahibits the complicatcd resonant structure of the original drum
beat.

Changing the modc of stimulus 10 an LPC encoded drum sound gives a wide varicty of -
sonic options. If thc cnergy and/or duration of say an exponcniially decaying
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Gaussian stimulus is varicd, this provides a subilc variation of sounds, consistenl with
a drummer striking his drum in slighily differeat ways, To give a degree of realism,
these energy and dusation paramecters may be varicd in some random way il a drum
machine is being used or might bc under user comtrol, say by being influenced by
the forcc or position of strikc on a synthctic drum pad. The drummer may similarly
simply changc 1o elfcctively using soft beaters by changing the stimulus 10 a
Brownian nois¢ sequence.

Changing the numbcr of samples reproduced per model sct alse has a sublle cflect,
which is most promincnt when using Brownian noisc as Ihe stimulus. The dillerence
is a slight change of piich, as expected. The difference is best detected when a
synthctic drum wilh double the normal number of samplcs per coeflicicnt st is
alternated with onc reproduced with half the normal numbcr - the latier has the
lower pitch. The dilference is likely to be more marked il say four or cight times ihe
normal number {cquivalently a quarter or an cighth the number) of samples arc
produced per cocfficient sci, but this was nol tesied.

Overall, the resulls were slightly disappointing in onc respect, which is that the
resonances were still much morc damped than in the original drum samples,
cspecially with the non-windowing covariance lechnique. There arc some possible
measurcs 10 lake 1o alleviatc this, such as performing the analysis over the same
number of samples (cg over 2048 samples for a 200 order model) but overlapping the
dala, thereby providing more coclficient scis per drum beat and also reducing ihc
data comprcssion achicved.

Conclysiong

Inicresting sounds can be crcated with a wide degree of varicty from a single LPC
encoded drum sample which also offers significant data compression possibilitics
comparcd (o sampling tcchniques, though obviously with the added computational
burden of rccreating the samples. This flexibility should be incorporated into user
interfaces for symthetic drum  Kits,

How good the synthesiscd samples are depends very strongly on how thc analysis was
pesformed “in the first place, with the autocorrclation algorithm standing out as the
better of the Iwo techniques. Since there are many diffcrent algorithms for .
obtzining LPC models, furnher invesiigalion is necded into thc subject of the analysis
algorithm. It may prove in the long term that cach algorithm has its own inleresting
(caturcs and that the user of the synthetic drum kit of the future will be able 1o
cxperiment  with  Lhese,

This paper l{as only rcally scratched the surface of the problem of syathesising
drums from LPC modcls - there is still a great deal of experimentation that could be
done. Furthermore, these same lechniques could be applied to the analysis and
synthesis of other instrumenis, perhaps slarting with piano sirings, which arc also
struck, but in the futurc cxtending to all other acoustic instruments. '
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Figurc 4:Drum rcsynthesis with various paramcters
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