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This paper presents a simulation study on the feasibility of a smart metamaterial panel designed 

to reduce the flexural vibrations in wide frequency ranges. The system is composed by a thin 

aluminium plate with a dense two dimensional array of shunted piezoelectric patch transducers. 

The plate is exposed to a rain on the roof time and spatial stochastic excitation. The overall flex-

ural response of the plate is derived in terms of the time averaged total flexural kinetic energy. 

The piezoelectric patch transducers are connected to multi-resonating shunts specifically designed 

to suppress flexural vibration of the plate over multiple frequency bands. The overall vibration 

control effect is obtained both via the regular arrangement of the patches on the panel and via the 

multi-resonating shunts, which are optimized to maximise the absorbed electrical power over tar-

get frequency bands.    

 Keywords: acoustic metamaterial, piezoelectric patch, electric shunt, vibration absorber 

 

1. Introduction 

This work investigates the vibration control effects produced in a thin panel by a periodic array of 

piezoelectric patches connected to multi-resonant shunts that mimic multi-modal vibration absorbers. 

The vibration stop band effect in periodic structures has been the subject of many studies for a long 

time now and the structural wave interference phenomena that characterise this phenomenon are de-

scribed in books, such as for example ref. [1]. More recently the vibration stop band effects produced 

on structures by regular arrays of resonating inclusions has also been investigated [2]. In this case, 

the stop band effect is due to both the structural wave interference effect produced by the regular 

spacing of the inclusions and by the interaction between the resonant response of the inclusions and 

the structural wave propagation in the structure. In this work, the effects produced on a thin panel by 

a periodic array of piezoelectric patch transducers connected to multi-resonant shunts set to maximise 

the absorbed electric power are investigated. The idea of using shunted piezoelectric patch transduc-

ers to reduce vibrations of mechanical systems and flexible structures was first proposed by Forward 

[3]. Since then, many studies were carried out on this topic [4-7], which considered a wide range of 

solutions, ranging from classical RL shunts to more complex circuits involving active elements that 

implement negative capacitance effects or multi-resonant electric networks. Recently, research work 

has also been focussed on the development of structures with dense arrays of shunted piezoelectric 

patches that mimic an array of resonators and thus produce stop band phenomena due to both struc-

tural wave interference and vibration absorption effects [8-11]. 

This work starts with the description of the panel system with a grid of multi-resonant shunted 

piezoelectric patches. The details of the mathematical model used to obtain the simulation results are 

then presented in section 3. The vibration control effects produced when the array of multi-resonant 

shunted piezoelectric patches is either set to minimise the time averaged total flexural kinetic energy 

of the panel, i.e. the overall flexural response of the panel, or it is tuned to maximise the time averaged 

total electric power absorbed by the shunts is analysed and contrasted in section 4.  
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2. Description of the system 

Figure 1 shows the smart plate system considered in this study, which is composed by a simply 

supported rectangular thin plate, whose geometry and physical properties are summarized in Tab. 1. 

As depicted in Figure 1A, the plate is exposed to a white noise rain-on-the-roof excitation, which is 

modelled in terms of a 4×4=16 array of uncorrelated point forces uniformly distributed over the 

surface of the plate. An array of 9×7=63 patches is arranged on the plate as shown in Figure 1B. 

Each patch is connected to a multi-resonant shunt, which is composed by a cascade of parallel RLC 

meshes (Fig. 1C). 
 

 

Figure 1: Plate subject to a rain on the roof excitation modelled as a 4×4 array of uncorrelated point forces (A) 

and equipped with an array of 9×7 piezoelectric patch transducers (B), connected to multi-resonant shunts (C). 

Table 1: Dimensions and physical properties of the panel and piezoelectric patches. 

 Plate Piezoelectric patches 

dimensions 𝑙𝑥𝑝 × 𝑙𝑦𝑝 = 414 × 314 𝑚𝑚 𝑙𝑝𝑒 × 𝑙𝑝𝑒 = 11 × 10 𝑚𝑚 

Thickness ℎ𝑝 = 1 𝑚𝑚 ℎ𝑝𝑒 = 1 𝑚𝑚 

Density 𝜌𝑝 = 2700 𝑘𝑔/𝑚3 𝜌𝑝𝑒 = 7600 𝑘𝑔/𝑚3 

Young’s modulus 𝐸𝑝 = 7 × 1010 𝑁/𝑚2 𝐸𝑝𝑒 = 2.7 × 1010 𝑁/𝑚2 

Poisson ratio 𝜐𝑝 = 0.33 𝜐𝑝𝑒 = 0.275 

modal damping ratio 𝜁𝑝 = 0.02 𝑙𝑝𝑒 × 𝑙𝑝𝑒 = 1.1 × 1 𝑚𝑚 

periodicity length 35 𝑚𝑚  

strain/charge constants  𝑑31
0 = 𝑑32

0 = 150 × 10−12 𝑚/𝑉 

𝑑36
0 = 0 

permittivity  𝜀𝑝𝑒 = 84 × 10−9 𝐹/𝑚 

capacitance  𝐶𝑝𝑒 = 3.167 × 10−9 𝐹 

3. Mathematical model 

3.1 Mechanical and electrical equations 

The mathematical formulation for the coupled flexural response of the panel and piezoelectric 

patches is based on Refs. [12,13] and considers the classical theory of out of plane flexural vibrations 

in thin plates that refers to Kirchhoff hypothesis [14]. In-plane vibrations are not taken into account, 

which is a reasonable assumption within the considered frequency range (20 Hz – 1 kHz). The re-

sponse of the system is derived from the generalized form of Hamilton’s principle for electromechan-

ical systems [14-17]. Two matrix equations are derived for the flexural response of the panel, which 

is expressed in terms of R modal coordinates for the flexural modes of the plain panel [18], and for 

the electric response of the shunts [12,13]: 
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𝐌𝑡𝐪̈(𝑡) + 𝐂𝑝𝐪̇(𝑡) + 𝐊𝑡𝐪(𝑡) + 𝛉𝑝𝑒𝐯𝑠(𝑡) = 𝚽𝑝𝐟𝑝(𝑡) , (1) 

−𝛉𝑝𝑒
𝑇 𝐪̇(𝑡) + 𝐂𝑝𝑒𝝀̈𝑠(𝑡) = 𝐢𝑠(𝑡) . (2) 

Here 𝐪 = ⌊𝑞1 ⋯ 𝑞𝑅⌋𝑇 is the vector with the modal coordinates, 𝐟p = ⌊𝑓𝑝1 ⋯ 𝑓𝑝16⌋𝑇 is the vec-

tor with the amplitudes of the 4×4 array of forces acting on the plate. As shown in Refs. [12,13], 

𝐌𝑡 = 𝐌𝑝 + 𝐌𝑝𝑒  and 𝐊𝑡 = 𝐊𝑝 + 𝐊𝑝𝑒  are the R×R modal mass and stiffness matrices, which are 

given by the sum of a diagonal matrix for the plate effect and a fully populated matrix for the piezo-

electric patches effects. Also, 𝐂𝒑 is the R×R modal damping matrix of the plate and 𝚽𝑝 is a  R×16 

matrix with the modal amplitudes at the excitation points. The vectors  𝝀𝑠 = ⌊𝜆𝑠1 ⋯ 𝜆𝑠63⌋
𝑇 and 

 𝐢𝑠 = ⌊𝑖𝑠1 ⋯ 𝑖𝑠63⌋
𝑇  contain the flux linkages and currents of the shunts (N.B. 𝝀̇𝑠 = 𝐯𝑠 where 𝐯𝑠 =

⌊𝑣𝑠1 ⋯ 𝑣𝑠63⌋𝑇 is the vector with the shunts voltages). Also, the 63×63 diagonal matrix 𝐂𝑝𝑒 con-

tains the capacitances of the piezoelectric patches 𝐶𝑝𝑒 = 𝜀𝑝𝑒
𝑆 𝐴𝑝𝑒/ℎ𝑝𝑒. Finally, 𝛉𝑝𝑒 is the R×63 pie-

zoelectric coupling matrix. The details of all these matrices can be found in Refs. [12,13]. 

3.2 Multi-modal shunt electrical equations 

As depicted in Figure 1C, each shunt is characterised by a cascade or parallel RLC meshes, which 

are assumed equal for all shunts. Assuming the electrical functions are time-harmonic and given in 

the form 𝑓(t) = 𝑓(ω)exp (jω), where 𝑓(ω) is the complex amplitude, ω is the circular frequency 

and j = √−1, the impedance of the cascade of parallel RLC meshes in each shunt circuit can be 

expressed with the following series of N second order terms: 

𝑣𝑠,𝑖(𝜔)

𝑖𝑠,𝑖(𝜔)
=

𝜆̇𝑠,𝑖(𝜔)

𝑖𝑠,𝑖(𝜔)
= −𝑍𝑠,𝑖(𝜔) = −

j𝜔(
1

𝐶1
)

−𝜔2+j𝜔(
𝜔𝑛1
𝑄1

)+𝜔𝑛1
2

−
j𝜔(

1

𝐶2
)

−𝜔2+j𝜔(
𝜔𝑛2
𝑄2

)+𝜔𝑛2
2

− ⋯−
j𝜔(

1

𝐶𝑁
)

−𝜔2+j𝜔(
𝜔𝑛𝑁
𝑄𝑁

)+𝜔𝑛𝑁
2

 , (3) 

where 𝜔𝑛𝑗 = 1/√𝐿𝑠𝑗𝐶𝑠𝑗 and 𝑄𝑗 = 𝑅𝑠𝑗√𝐶𝑠𝑗/𝐿𝑠𝑗  are respectively the natural frequency and quality 

factor of the j-th RLC mesh characterised by inductance 𝐿𝑠𝑗, capacitance 𝐶𝑠𝑗 and resistance 𝑅𝑠𝑗. Each 

second order term in Eq. (3) can be envisaged as the ratio between a “modal” voltage 𝑉𝑠,𝑗, i.e. flux 

linkage rate Λ̇𝑠,𝑗, and current 𝐼𝑠,𝑗. Thus, the flux linkage can be expressed with the following matrix 

equation  

𝜆𝑠(𝜔) = −𝚿𝑠𝚲𝑠(𝜔),  (4) 

where 𝚿𝑠 = [
1

√𝐶𝑠
…  

1

√𝐶𝑠
] and 𝚲𝑠(𝜔) = ⌊Λ𝑠1 ⋯ Λ𝑠𝑁⌋𝑇 is the vector with the modal flux linkages, 

which can expressed in terms of the modal currents by the following matrix relation 

𝚲𝑠(𝜔) = 𝐆𝑠(𝜔)𝐈𝑠(𝜔) ,  (5) 

that is 

[
 
 
 
 
Λ𝑠1(𝜔)

Λ𝑠𝑁(𝜔)]
 
 
 
 

= −

[
 
 
 
 

1

−𝜔2+j𝜔(
𝜔𝑛1
𝑄1

)+𝜔𝑛1
2

⋱
1

−𝜔2+j𝜔(
𝜔𝑛𝑁
𝑄𝑁

)+𝜔𝑛𝑁
2

]
 
 
 
 

[
 
 
 
 
𝐼𝑠1(𝜔)

𝐼𝑠𝑁(𝜔)]
 
 
 
 

 .  (6) 

Here 𝐈𝑠(𝜔) = ⌊𝐼𝑠1 ⋯ 𝐼𝑠𝑁⌋𝑇 is the vector with the modal flux linkages, which in turn is given by  

𝐈𝑠(𝜔) = 𝚿𝑠
𝑇𝑖𝑠(𝜔) . (7) 

Considering the expanded form in Eq. (6), the frequency domain Eq. (5) can be straightforwardly 

transformed into the following time domain expression:   

𝚷𝑠𝚲̈𝑠(𝑡) + 𝚫𝑠𝚲̇𝑠(𝑡) + 𝛀𝑠
2𝚲𝑠(𝑡) = −𝐈𝑠(𝑡) , (8) 
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where 

𝚷𝑠 = [
1

⋱
1

] ,    𝚫𝑠 = [

𝜔𝑛1

𝑄1

⋱
𝜔𝑛𝑁

𝑄𝑁

] ,     𝛀𝑠 = [
𝜔𝑛1

⋱
𝜔𝑛𝑁

] . (9-11) 

Now, considering 63 independent shunt circuits, Eq. (8) becomes 

𝚷̂𝒔𝚲̈̂𝑠(𝑡) + 𝚫̂𝑠𝚲̇̂𝑠(𝑡) + 𝛀̂𝑠
2𝚲̂𝑠(𝑡) = −𝐈̂𝑠(𝑡) , (12) 

where 𝚲̂𝑠 = [𝚲𝑠1
𝑇 ⋯ 𝚲𝑠63

𝑇 ]𝑇, 𝐈̂𝑠 = [𝐈𝑠1
𝑇 ⋯ 𝐈𝑠63

𝑇 ]𝑇, and 

𝚷̂𝑠 = [
𝚷𝑠1

⋱
𝚷𝑠63

] ,     𝚫̂𝑠 = [
𝚫𝑠1

⋱
𝚫𝑠63

] ,     𝛀̂𝑠 = [
𝛀𝑠1

⋱
𝛀𝑠63

] .  (13-15) 

Also Eqs. (4) and (7) become  

𝛌𝑠(𝜔) = −𝚿̂𝑠𝚲̂𝑠(𝜔),    𝐈̂𝑠(𝜔) = 𝚿̂𝑠
𝑇𝐢𝑠(𝜔) , (16,17) 

where the rectangular matrix 𝚿̂𝑠 is assembled as follows: 

𝚿̂𝑠 = [
𝚿𝑠1

𝑇

⋱
𝚿𝑠𝑁

𝑇
] . (18) 

3.3 Filtered response of the output modal velocities and shunt currents 

The multi-resonant shunts have been tuned in such a way as to either minimise the time averaged 

total flexural response of the panel or to maximise the time averaged total electrical power absorbed 

by the shunts filtered within a series of adjacent frequency bands. Thus, the conversion to filtered 

modal coordinates and filtered shunt magnetic flux linkages is derived here. For convenience, simple, 

second order filters were implemented such that: 

𝐪𝑓(𝜔) = 𝑮q(𝜔)𝐪(𝜔)   and    𝚲̂𝑠𝑓(𝜔) = 𝑮Λ(𝜔)𝚲̂𝑠(𝜔) , (19,20) 

where 𝑮q and 𝑮Λ are diagonal matrices whose elements for the k-th filtering band are all equal to: 

𝐺𝑓,𝑘(𝜔) =
j𝜔(𝜔𝑘/𝑄𝑘)

−𝜔2+j𝜔(𝜔𝑘/𝑄𝑘)+𝜔𝑘
2 .  (21) 

Here 𝜔𝑘 = √𝜔𝑘𝑚𝑖𝑛𝜔𝑘𝑚𝑎𝑥 is the centre frequency and 𝑄𝑘 is the quality factor of the filters. As seen 

in the previous section, the frequency Eqs. (19), (20), can be straightforwardly casted into time do-

main equations, which take the following forms: 

𝚷𝑓𝐪̈𝑓(𝑡) + 𝚫𝑓𝐪̇𝑓(𝑡) + 𝛀𝑓
2𝐪𝑓(𝑡) = 𝐪̇(𝑡) ,  𝚷̂𝑓𝚲̈̂𝑓(𝑡) + 𝚫̂𝑓𝚲̇̂𝑓(𝑡) + 𝛀̂𝑓

2𝚲̂𝑓(𝑡) = 𝚲̇̂(𝑡) . (22,23) 

Considering the k-th filtering band, 𝚷𝑓 and 𝚷̂𝑓 are identity matrices, 𝚫𝑓 and 𝚫̂𝑓 are diagonal matrices 

with all terms equal to 𝜔𝑘/𝑄𝑘 and 𝛀𝑓 and 𝛀̂𝑓 are diagonal matrices with all terms equal to 𝜔𝑘. 

3.4 State Space Formulation 

The time domain Eqs. (1), (2), (12), (22), (23) were employed to generate a State Space formula-

tion for the response and filtered response of the system. First of all, Eq.  (1) was rewritten as follows: 

𝐪̈(𝑡) = −𝐌𝑡
−1𝐊𝑡𝐪(𝑡) − 𝐌𝑡

−1𝐂𝑝𝐪̇(𝑡) − 𝐌𝑡
−1𝛉𝑝𝑒𝐯𝑠(𝑡) + 𝐌𝑡

−1𝚽𝑝𝐟𝑝(𝑡) . (24) 

Also, Eqs. (12), (16), (17) were used to rewrite the electric Eq. (2) in terms of the modal flux linkages. 

This was accomplished by pre-multiplying the left and right hand side of Eq. (2) by 𝛉̂𝑝𝑒
𝑇  such that, 

using Eqs. (16) and (17), the following expression was obtained: 
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−𝚿̂𝑠
𝑇𝛉𝑝𝑒

𝑇 𝐪̇(𝑡) + 𝚿̂𝑠
𝑇𝐂𝑝𝑒𝝀̈𝑠(𝑡) = −𝚿̂𝑠

𝑇𝛉𝑝𝑒
𝑇 𝐪̇(𝑡) + 𝚿̂𝑠

𝑇𝐂𝑝𝑒𝚿̂𝑠𝚲̈̂𝑠(𝑡) = 𝚿̂𝑠
𝑇𝐢𝑠(𝑡) = 𝐈̂𝑠(𝑡) . (25) 

Eq. (12) was then substituted in the right hand side of this equation such that: 

𝚲̈̂𝑠(𝑡) = 𝐂̂𝑝𝑒
−1𝛉̂𝑝𝑒

𝑇 𝐪̇(𝑡) − 𝐂̂𝑝𝑒
−1𝚫̂𝑠𝚲̇̂𝑠(𝑡) − 𝐂̂𝑝𝑒

−1𝛀̂𝑠
2𝚲̂𝑠(𝑡) , (26) 

where 𝐂̂𝑝𝑒 = [𝐈̂ + 𝚿̂𝑠
𝑇𝐂𝑝𝑒𝚿̂𝑠] and 𝛉̂𝑝𝑒

𝑇 = 𝚿̂𝑠
𝑇𝛉𝑝𝑒

𝑇 . Finally, to work out the time-derivative term in the 

second member, Eqs. (22) and (23) were rewritten with respect to the following new vectors for the 

modal coordinates and modal flux linkages  

𝐪𝑓′(𝑡) = 𝐪̇𝑓(𝑡) − 𝚫𝑓𝐪(𝑡)  and  𝚲̂𝑠𝑓′(𝑡) = 𝚲̇̂𝑠𝑓(𝑡) − 𝚫̂𝑠𝑓𝚲̂𝑠(𝑡)  (27,28) 

such that, after some mathematical manipulations, they were transformed in the following matrix 

expressions: 

𝐪̇𝑓′(𝑡) = −𝛀𝑓𝐪𝑓(𝑡) − 𝚫𝑓𝐪𝑓′(𝑡) − 𝚫𝑓
2𝐪(𝑡) ,  𝚲̇̂𝑠𝑓′(𝑡) = −𝛀̂𝑠𝑓𝚲̂𝑠𝑓(𝑡)−𝚫̂𝑠𝑓𝚲̂𝑠𝑓′(𝑡) − 𝚫̂𝑠𝑓

2 𝚲̂𝑠(𝑡) .  (29,30) 

At this point, Eqs. (24), (26), (29) (30) were ready to be used to construct the state space formulation 

with respect to the state vector 

𝐱(𝑡) = [𝐪𝑇 𝐪̇𝑇 𝐪𝑓
𝑇 𝐪𝑓′

𝑇 𝚲̂𝑠
𝑇 𝚲̇̂𝑠

𝑇 𝚲̂𝑠𝑓
𝑇 𝚲̂𝑠𝑓′

𝑇 ]
𝑇
. (31) 

A classical state space formulation was thus derived with three output equations, one for the modal 

coordinates of the structural response, one for the filtered modal coordinates of the structural response 

and one for the filtered flux linkages of the shunts: 

𝐱̇(𝑡) = 𝐀𝐱(𝑡) + 𝐁𝒇𝑝(𝑡), (32) 

𝐪̇(𝑡) = 𝐂𝐪𝐱(𝑡) ,      𝐪̇𝑓(𝑡) = 𝐂𝐪𝑓𝐱(𝑡) ,       𝚲̇̂𝑠𝑓(𝑡) = 𝐂𝚲𝑓𝐱(𝑡) . (33-35) 

The state space and the input/output matrices were derived as follows 

𝐀 =

[
 
 
 
 
 
 
 
 
 

𝟎 𝐈 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎
−𝐌𝑡

−1𝐊𝑡 −𝐌𝑡
−1𝐂𝑝 𝟎 𝟎 −𝐌𝑡

−1𝛉̂𝑝𝑒 𝟎 𝟎 𝟎

𝚫𝑓 𝟎 𝟎 𝐈 𝟎 𝟎 𝟎 𝟎

−𝚫𝒇
𝟐 𝟎 −𝛀𝒇

𝟐 −𝚫𝑓 𝟎 𝟎 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝟎 𝐈 𝟎 𝟎
𝟎 𝐂̂𝑝𝑒

−1𝛉̂𝑝𝑒
𝑇 𝟎 𝟎 −𝐂̂𝑝𝑒

−1𝛀̂𝑠
2 −𝐂̂𝑝𝑒

−1𝚫̂𝑠 𝟎 𝟎

𝟎 𝟎 𝟎 𝟎 𝚫̂𝑠𝑓 𝟎 𝟎 𝐈

𝟎 𝟎 𝟎 𝟎 −𝚫̂𝑠𝑓
2 𝟎 −𝛀̂𝑠𝑓

2 −𝚫̂𝑠𝑓]
 
 
 
 
 
 
 
 
 

,  (36) 

𝐁 = [𝟎 [𝐌𝒕
−𝟏𝚽𝒑]

𝑇
𝟎 𝟎 𝟎 𝟎 𝟎 𝟎]

𝑇
        𝐂𝐪 = [𝟎 𝐈 𝟎 𝟎 𝟎 𝟎 𝟎 𝟎] (37,38) 

𝐂𝐪𝑓 = [𝚫𝑓 𝟎 𝟎 𝐈 𝟎 𝟎 𝟎 𝟎]     𝐂𝚲𝑓 = [𝟎 𝟎 𝟎 𝟎 𝚫̂𝑠𝑓 𝟎 𝟎 𝐈]
𝑇
 . (39,40) 

3.5 Time averaged energy functions 

The optimisation study was carried out considering the filtered time averaged total flexural re-

sponse of the panel and the filtered time averaged total power absorbed by the shunts given by [19]: 

𝐾̅ = 𝐸[𝐾(𝑡)] = 𝐸 [
1

2
𝐪̇𝑓

𝑇𝐌𝑡𝐪̇𝑓] =
1

4
Tr[𝐂𝐪𝑓

𝑇 𝐌𝑡𝐂𝐪𝑓𝐗] ,     (41) 

𝑃̅ = 𝐸[𝑃(𝑡)] = 𝐸 [𝚲̇̂𝑠𝑓
𝑇 𝐂𝑠

−1𝐑𝑠
−1𝚲̇̂𝑠𝑓] =

1

2
Tr[𝐂𝚲𝑓

𝑇 𝐂𝑠
−1𝐑𝑠

−1𝐂𝚲𝑓𝐗] ,  (42) 

where the covariance matrix 𝐗 satisfies the Lyapunov equation  
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𝐀𝐗 + 𝐗𝐀T + 𝐁𝐅𝐁T = 𝟎   (43) 

and 𝐅 = 𝐸[𝐟𝑝𝐟𝑝
𝑇] is the covariance matrix of the rain on the roof excitation, which in this study is 

assumed as an identity matrix. 

3.6 Power spectral density of the time average kinetic energy 

The effectiveness of the array of multi-resonant shunts was derived in terms of the spectrum of the 

plate total flexural kinetic energy Power Spectral Density (PSD), which is given by [26]: 

𝑆𝐾(ω) =
1

2
𝑚𝑝Tr[𝐌𝑡𝐘(𝜔)𝐒𝐟𝐟(ω)𝐘𝐻(𝜔)] ,  (44) 

where 𝐒𝐟𝐟(𝜔) is the matrix with the PSD functions of the 16 uncorrelated white noise forces acting 

on the plate, which is therefore given by a 1616  identity matrix. Also 𝐘(𝜔) is a matrix with self and 

cross modal mobility functions,  

𝐘(ω) = j𝜔[−𝜔𝟐𝐌𝑡 + j𝜔𝐂𝑝 + 𝐊𝑡 + j𝜔𝛉𝑝𝑒𝐙𝑠𝑝𝑒𝛉𝑝𝑒
𝑇 ]

−1
𝚽𝑝 ,  (45) 

where 𝐙𝑠𝑝𝑒 = [𝐈 + j𝜔𝐂𝑝𝑒𝐙𝑠]
−1

𝐙𝑠  and 𝐙𝑠 is a diagonal matrix with the multi-resonant impedances of 

the shunts, which were derived in Eq. (3). 

4. Simulation results 

As discussed in Ref. [12], the optimal RL parameters that should be implemented in a shunted 

piezoelectric patch to control the flexural response of a two dimensional flexible structure cannot be 

derived with closed form expressions. Therefore, the optimal shunt parameters that would reduce the 

low frequencies narrow band resonance peaks and mid frequencies wide band resonance crests, have 

been derived numerically considering the 10 bands in the spectrum of the kinetic energy PSD shown 

in Fig. 2, each of which encompass at least one resonance peak. 

 

 

Figure 2: Flexural kinetic energy PSD of the plate and piezoelectric patches in open circuit configuration 

with highlighted the frequency bands considered in the shunts optimization study. 

 

Plots A, D and B, E of Fig. 3 respectively present the panel flexural kinetic energy and the electric 

power absorbed by a RLC shunt averaged in the frequency bands 1 and 6 with respect to the resonance 

frequency 𝑓𝑠 and quality factor 𝑄𝑠 of a simple RLC shunt. Thus, for example, plots A, D gives the 

optimal RLC values that should be implemented in the meshes of the multi-resonant shunts to mini-

mise the resonant flexural response of the panel in the first and sixth frequency bands highlighted in 

Fig. 2. Contrasting plots A, D with the equivalent plots B, E, it is noted that the minimum of the 

filtered plate flexural kinetic energy and the maximum of the filtered electric power absorbed by the 

shunts occurs for very similar values of 𝑓𝑠 and 𝑄𝑠, that is for very similar values of the RLC compo-

nents of the shunt. This is a rather interesting result, which indicates a practical approach to tune the 

multi-resonant shunts formed by a cascade of RLC meshes. Indeed, an iterative initialisation stage 

can be conceived where the RLC parameters of each mesh in the shunts are set to maximise the 

filtered electric power absorbed by the shunts. The spectra in plots C, F of Fig. 3, show the PSD of 

the panel flexural kinetic energy when the piezoelectric patches are either in open circuit (blue lines) 
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or connected to a RLC shunt that implements the optimal RLC values that minimise the panel flexural 

kinetic energy and thus maximise the power absorption of the RLC shunt. The plots also show the 

PSD of the electric power absorbed by the shunt (black line). The kinetic energy spectra show that, 

as one would expect with classical vibration absorbers, when the piezoelectric patches are connected 

to the optimal RLC shunts, the resonance peak that characterised the flexural response in the target 

band is split into two resonance peaks, which are effectively damped. As can be noted in the absorbed 

electric power spectrum, the energy subtracted to the structure to produce the damping effect is actu-

ally absorbed by the shunt.  It is important to note that, as can be observed in Plots D and E of Fig. 3, 

for band 6, the optimal 𝑓𝑠 of the shunts diverges from the resonant frequency of the plate within the 

analysed frequency band. This is due to the fact that, above about 200 Hz, the plate modal overlap 

exceeds unity and thus the response of the panel at each frequency is characterized by the superposi-

tion of an increasing number of higher order natural modes. Therefore the natural frequency of the 

optimal RLC shunt may diverge from the resonance frequency of the target resonance crest.  
 

 
Figure 3: Flexural kinetic energy (Plots A, D) and power absorbed by a RLC shunt (Plots B, E) averaged in 

the frequency bands 1 and 6. Plots C, F, flexural kinetic energy PSD (open circuit blue lines; optimal RLC 

shunts red lines) and of the absorbed power PSD (optimal RLC shunts dotted black line). 
 

 
Figure 4: Kinetic energy PSD of the plate and piezoelectric patches in open circuit (blue line) and connected 

to idealised multi-resonant shunts (red), electric power absorbed by the shunts PSD (black line). 

 

The optimal values of 𝑓𝑠 and 𝑄𝑠 for the 10 frequency bands highlighted in Fig. 2 have been imple-

mented into multi-resonant shunts formed by a sequence of then RLC meshes as shown in Fig. 1C. 

The plot in Figure 4 shows the 20 – 400 Hz spectra of the panel flexural kinetic energy PSD when 

the piezoelectric patches are either in open circuit (blue lines) or connected to the multi-resonant 

meshes whose RLC components were derived in such a way to maximise the electric power absorbed 

by RLC shunts in the 10 frequency bands highlighted in Figure 2. The plot also shows the PSD of the 

electric power absorbed by the shunt (black line). The graph confirm that the array of piezoelectric 
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patches with multi-resonant shunts produces a significant reduction of the flexural response of the 

panel in the whole 20 – 400 Hz frequency band. The low frequency sharp resonance peaks are lowered 

by 5 to 10 dB; but also the higher frequency wide band crests are brought down by about 6 to 10 dB.   

5. Conclusions 

This paper has presented a simulation study on the implementation of a dense array of piezoelectric 

patches connected to multi-resonant shunts formed by a cascade of RLC meshes. The RLC meshes 

were tuned in such a way as to minimise the flexural kinetic energy of the panel averaged in target 

frequency bands. The study has shown that this control strategy is equivalent to the maximisation of 

the electric power absorbed by the shunts, which is a more practical cost function to be implemented. 

Finally, the study has shown that when the multi-resonant shunts are implemented with a cascade of 

10 RLC meshes tuned to maximise the electric power absorbed by the shunts in 10 target frequency 

bands, the flexural response of the panel in the 20 to 400 Hz band is reduced by 5 to 10 dB.  
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