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1. INTRODUCTION

Propagation of sound under water beyond the immediate spherical spreading region (lypically
at ranges greater than a water depth) can be very sensitive to small variations in sound speed
with depth [1] and with the exception of some very special cases {2.3] analytical sclutions are
not available. For this reason many numerical models have been developed over ithe past 20
years or so [4] and these have been reviewed by a number of different authors {5-7]. -However,
these models all make different assumptions and approximatlons, and it is usually not cbvious
which, if any, is best suited to a particular problem. One possible approach is to develop
diagnostics [8] to check a numerical solution a posteriori and the comparisons thus obiained
are very uselul in their own right. Nevertheless, it is clearly desirable to choose a suitable
model to start with., and no widely applicable method exists for doing so - users rely on the
cumulative experience of experts for advice.

One might expect that eventually, one model would emerge as an outright winner and gain a
reputation of being the best available. The reason why this has not happened is that the needs
of different types of users differ widely, although it is fair to say that the choice usually amounts
to-a compromise between speed and accuracy. The aim of this paper is to provide guidance on
how best to achieve this compromise.

2. VARIOUS CRITERIA

There are, of course, many possible reasons for preferring one model over another: the needs of
an operational user at sea will be very different from those of research. Most can be grouped
into one of three different categories, referred to here as applicability, validily and practicality.

2.1 Applicability Criteria :

This term is related to the correctness of the underlylng assumptions of a model, either to do
with the acoustic. environment or the sonar parameters. For example, are the effects of
properties such as shear speed or porosity taken into account? Can the source be assigned a
bandwidth or beam pattern? Other effects which spring to mind which may or may not be
modelled are, in no particular order, surface roughness and other boundary loss mechanisms,
range dependence {2D or 3D), anisotropy, etc.

2.2 Validity Criterla

Even though a model may be applicable in the above sense, it may be thal a parameter or elfect
is treated only approximately. For example the Kirchoff approximation is often used for
surface scattering, the eflects of shear waves are sometimes treated as perturbations to the fluid
solution, the paraxial approximation is used to solve the wave equation in PE (Parabolic
Equation) models and so on. The validity of a model then is related to the accuracy of any such
approximations,
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2.3 Practicality Criteria
Finally, there are practical considerations which may influence the choice of model over and
above those of applicability and validity. The user must take into account:

- Availability of the model, implemented on a suitable computer. This covers constraints
such as cost, execution time, disk storage, memory slze. In addition, [inite array sizes
chosen by the programmer will inevitably lmpose limits on the values of some input
parameters (most obviously, the frequency).

- Availability of suitable input data. An obvicus example is the dilliculty in measuring the
properiies of the sea-bed in deep water. While the most accurate (wave theory) models
‘available require geo-acoustic parameters [9] to describe the sediment and substrate, in

practice the ocean bottom is -often described by means of a reflection loss table, thus

restricting the choice mainly to ray tracing models.
- Robustness-of the model, ie. sensitivily to numerical parameters such as mesh size. :

- Accuracy of the numerical solution method due to truncation and rounding errors (eg. for
solving large matrix problems). Arguably this could be classified under the "Validity"
heading but because thiese problems are, in general, implementation dependent, it is
considered here to be a.practical problem, not fundamentally assoclated with limitations of
the model itself. ~ . :

2.4 Chosen Criteria , i : . .

Any attempt at tackling all or most of the considerations described above is beyond the scope ol
this paper. ‘Here we concentrate on a more tractable problem - simple enough for all widely
available propagation models Lo be applicable ‘while sufficiently general to be of widespread
interest - and compare the accuracy of the models’ approximations (validity) by means of the
effective angle (Section 3) and their respective computation times (practicality, Section 4). The
chosen model problem is thal of propagation from a point CW source in a horizontally
stratified fluid medium bounded above by a pressure release surface.

3. EFFECTIVE ANGLE

3.1 Ba

It is common knowledge that surface/bottom losses often result in steep angle ray paths
decaying - faster than shallower-grazing angles which interact with the boundaries less
frequently or not at all: "This resulls In an eflective limit to the angle ol propagation which
tends to reduce with increasing range, referred to from now on as the effective angle 8. {eg.
Weston (Referenice 10) - In passing, note also Weston's Figure 1 showing a graph of the number of
modes vs number of rays as a function of range, depth and frequency. Without addressing

validity, such a graph could form the basis of a criterion for choosing a ray or mode model from
a practical point of view).

It' is shown In Reference 7 how the validity of many numerical methods can be described In
terms of an upper limit to allowed grazing angles 8, beyond which the approximations made
break down. The criterion proposed here is that if ® exceeds the effective angle 8. the model is
constdered to be valid and is capable of ari accurate solution to our model problem. Values of @
are for PE (Parabolic Equation [11]), NM (Normal Mode [12]) and FF (Fast Field [13]) programs
respectively ‘

Bpg ~20° (14]
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BOnm = cos! le/e)

BrF = cos™! (c/cq)

where ¢ is the sound speed at the source and ¢, is the phase speed of the highest wavenumber
modelled. In the case of 8ypy it corresponds to the highest order mode (for example in a Pekeris
duct, ®ym would usually be the critical angle). In Fast Field programs ¢, is actually an input
parameter, thus giving the user complete control over 8pf in exchange for reduced range
capability [7]. Although it is possible to define a value of @ for ray tracing models in the sense
that errors would necessarily be incurred for steeper angles (for example by rays splitting into
two on reflection at the sea-bed), it is not done here to avoid giving the incorrecl impression that
a ray solution would be accurate at smaller angles.

Weston [15] defines an eflective angle by means of the equation for intensily I as a function of
range r and water depth H:

- 20,
rH

(3.1)

which he uses to analyse the propagation in the cylindrical spreading (Weston's region B) and
mode stripping (C) regimes in range dependent environments. In fact what is meant here by the
concepl is simply the angle of the steepest ray path which makes a signiflicant contribution to
the field {see Reference 7. Eqn (3.1) is consistent with this loose bul more general definition in
regions B and C.

The most imporiant distinction between this paper and the elfective angle curves given by
Harrison [7] is the introduction of a short range regime in which the direct path dominates over
bottom reflections. The effect is to limit the effective angle to a maximum of tan! (2H/rg;)
where rg. is the transition range to bottom reflection. It will be seen later that the steepest
angles (and hence greatest difficulty for the models) occur in deep water and for this reason the
effective angle theory is developed for a simple deep water environment with source and
receiver close to the surface as illustrated in Figure 1.

3.2 Isovelocity

Initially the ocean is assumed to have a constant sound speed ¢y = ¢o (Figure 1a) and the elfects
of refraction in the water are then taken into account separately (Section 3.3). In essence, the
intensity can be thought of as the result of adding the contributions from three different
components (Figure 1 b-¢):

1
2
3

Direct/surface reflected path (DF)
Bottom reflected path (BL)
Bottom refracted path (BR)

Hoan

Analysis of Figure 1 shows that the angles associated with each component are

125 * Iy

Bpp = tan - (3.2)
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fgL = tan -;-— (3.3)
5 l - tan’} cr ] 1 16cpH
3 = Lan E B F>Tmin , (3.4)

where the steeper bottom refracted path [8] has been neglected because it is rarely of practical
interest. The value of 8gr Is undefined for r less than ry;, (the range of the first refracted
arrival, equal to the caustic range il there is one - see eqn (3.15)).

Multiple reflections/refractions are of course possible but in the case of 8y, may be ignored
because they cannot carry much energy compared to the first bottom bounce. This is because
having assumed a continuous sound speed across the water-sediment interface, the reflection
coellicient

p-1Y?
R= E-;-—l << [3.5}

is small [or realistic values of the sediment density p. For the BR component, al ranges r >
2 min. We do need to consider multiple returns and it is more convenient to use Weston's
definition here, giving

cos 1 =2
o Crmax Tmin <T<TI]5 26
BR = y
aH )”2 ris <r (3.6)
amr

subject to a lower limit of eqn {3.4), where

nH .1 Co 2
ri5 = —| cos ‘ (3.7)
4n

Cmax

is the transition range from cylindrical spreading to mode stripping and

4nl
m= ?E : ‘ (3.8)

Here f is the frequency and e is the fractional imaginary part of the sediment wavenumber such
that

ko = 22 (1+1e)
= +
° = | | (3.9)
a

£ = —eemne .
40r] og10€ (3.10)
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where a is the sediment aitenuation coellicient in dB per wavelength. Weston's {Reference 10)
loss per unit angle o is related to i by

o = (20log0e)n . (3.11)

If we can establish which of the three components is dominant for a given geometry, we can use
eqns (3.2}, (3.3) and (3.6) to construct 0.(r). Starting at very short range (Figure 1b), spherical
spreading (r?) ensures thal the Direct Path is most important. As range increases into the far
field of the surface dipole the DP falls off as r# and the steep bottom bounce will take over. At
still larger range, the BR return will eventually dominate (because R << 1]). These simple
observations can be summarised on a graph of effective angle vs range as shown in Figure 2.
Note that z, << r, and hence 8pp = O have been assumed. The transition ranges rg), and rgr
(derived in Appendix 1 by comparing the relative intensilies of the three components) are given
by : ‘

rgi, = 2H max(B,p%) (312

4nH '
(3.13)

In(1/R)

TpR = max|:rmin '

i

tan '(2H /1)

cos’ 1(00 /Cmax)

84dn

-
range r

TRl IR I'g

Figure 2 - Effective angle as a function of range in an
isovelocity deep water environment forr >> 2z,
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where
[ kzsze 12 l : .
B= Y . (3.14)
Co
I'min = 2Hcot8, +2Ftr;mf3S (3.15)
) , _ o
. -1 -Cp -1 He - . ’
0; = mln[cos -~ .tan (-;;] :1 . (3.18)
ax

In practice, not all parts of the 0q(r) curve are necessarily presént. For example if 1 > rggr (deep
source/receiver) there is no BL dominated region, or if r}5 < rgg (high frequency) the BR plateau
vanishes and there is no cylindrical spreading region.

3.3 Refraction Effects

The relative steepness of the bottom interacting paths means that, in deep water at least, they
are basically unaffected by refraction in the water. The DP component on the other hand is
approximately horizontal and is very sensitive (o refraction.

A negative grédient (o' < O resulis in a shadow in the direct path at a range

2c |12 '

rh={—| @+ (3.17)
Cw

and can be taken into account without difficulty by redefining

THL = min[rhiH rnaX(B-Bz)] L (3.18)

A positive gradient can result in an enhanced DP component depending on the strength of the
duct which in turn depends on the duct depth, frequency, source/receiver depths and the
gradient ¢y’ in a complicated way [16]. Because of this complexity, no attempt is made here to
compare the duct strength with BL and BR components. Instead we take the worst case and
simply assume that 0.(r) is unaffected by upward refraction, except where €. < 6pp would result in
which case 8. = 8pp is used. Under these clrcumstances, 8pp is the maximum angle sustainable
in the duct as determined by the velocity contrast

ZAc\' 7
wor =(T7) | oo
34 Exnmples o

The first example illustrating the use of the effective angle conéept is a simple deep water (H =
4000m, ¢ = 15}, p = 1.92, Cmax = 2000ms°!, a = 0.45 dB/}) isovelocity case taken [rom Reference 8.

L
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Figure 3 shows 0,(r) for this environment with z; = 15m. 2, = 30m [or three diflerent {requencies
25Hz, 250Hz, 21/2kHz. Note first of all the very high angles {(up to 82°) required at 25Hz, far
exceeding the values of ®pg ~20° and @y = cos ! (1500/2000) = 41°, and thus explaining the
failure of IFD, PAREQ and SUPERSNAP (Figures 7 - 9 of Reference 8) to reproduce the SAFARI
result (Figure 6 of Reference 8 - reproduced here as Figure 4) using a maximum phase speed ¢, =
10° ms™! (giving O = 89°).

At 250Hz, 0,4 (the maximum value of 8.(r)) is reduced to 67°, still too steep for SUPERSNAP.
Increasing the frequency still further to 21/2kHz, we can see from Figure 3 that O, is reduced to
32° and we can expect NM models to work in principle, though the computational cost may
become prohibitive, An additional factor to bear in mind at frequencics above 1kHz or so is
that surface losses and volume attenuation, so far ignored, will begin to influence the
propagation (see Section 3.6.1).

If the sediment attenuation Is reduced, the BR returns will of course be enhanced and a plateau
region in 6.(r) is clearly visible at 25Hz in Figure 5 (as Figure 3 but a = 0.045 dB/A). The
corresponding SAFARI resull, shown in Figure 6, Is very similar to Figure 4 except that at
ranges greater than rg;, = 12km the propagation is greatly enhanced, confirming the
predominance of bottom refractions in this region.

3.5 Rule of Thumb

It is clear from the above examples that, in deep water, the maximum elfective angle 6,5x 1S
dictated primarily by rg... the range at which bottom reflected paths exceed the direct path in
magnitude. Ignoring the influence of refraction, it follows from eqn (3.12) that if (B < 1), then
Omax = cot™!p > 45°, fe. steep enough to ensure some difficulty in modelling. Conversely if § > 1
(high frequency, shallow water) 8yax 1s likely to be governed by the BR plateau. ie. O, < cos!
(c/Cmax) = OnNm, guaranteeing the validity of normal mode models at least. The point is that § = 1
divides two quite different regimes and the magnitude of B provides an excellent indicator of
likely problems.

A simple rule of thumb is that in shallow water (3 >> 1) steep angles are unlikely to be a problem
and any of the above models may be used, whereas in deep water (8 £ 1) steep angles are almost
inevitable and careful consideration must be given to effective angles before a model is selected.
Note that this distinction between deep and shallow water is quite different from the
conventional assoclation with plentiful modes and high frequency. On the contrary, it is clear
from eqn (3.14) that the higher the frequency, the larger § becomes and the shallower the water
appears. .

Possible values of B in realistic situations (frequency 10Hz to 10kHz, water depth 40m to 4km,
source /receiver depth 10m to 300m) vary between 10° 2 and 10+2. For the environment

considered in Section 3.4,  varies between 0.1 (at 25Hz) and 1.4 (2.5kHz).

3.6 Miscellaneous Effects

The effective angle theory in Section 3 initially assumed an isovelocity. deep water
environment and a low frequency source, although the isovelocity conslraint was removed In
Section 3.3. The purpose of this Section is to examine the signiﬂcance of the other two
constraints and to show how they too can be removed.

3.6.1 High Frequency. When the frequency exceeds 1kHz or so, the a33umption that surface and

volume losses can be Ignored no longer holds. For example poor reflection means that the
surface dipole is no longer symmetrical, so that perfect cancellation is no longer possible and
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the DP is. characterised by r'2 instead of r# at long range. As far as volume attenuation is
concerned, the longer path length of the BL component compared to DP means that it will suffer
greater attenuation. Both effects result in a stronger DP (relative to BL) and hence larger ry, and
smaller effective angles. The existing theory can therefore be used unmodified to obtain an
upper bound on the true effective angle, in a similar way as for upward refraction ic,, > Q).

3.6.2 Shallow Water. In the preseni context the "deep water” assumption covers a multitude of
sins, and these are considered in turn.

Firsily, throughout this paper it has been implicitly assumed that the ray arguments of
Section 3.2 are applicable, for which we required kH >> 1. In fact this inequality is satisfied
automatically at all frequencies above 25Hz so long as the water depth is 100m or more.

Second, the assumed geometry required z, , << H. Removing this limitation simply makes the
equalions of Section 3 more complicated without adding any insight and without allecting any
of the conclusions,

Finally, the sea-bed characteristics chosen are typical of deep water but not shallow water

(continental shell) sediments. which are frequently modelled with an isovelocity fast bottom (cg
> €y, ¢' = 0). This Pekeris duct problem can be catered for by replacing eqns (3.8) and (3.15) with

m = 2pseche c:c.\tal-)C £
I'min = 2HCO[9C

where

6. = cos’ llcw /ca)

is the critical angle, and the role of the bottom refracted component is taken by lotally
internally reflected paths. Il is interesting to note that although this situation is equivalent to
pulling cp = Cy, €' = o=, B = cos°! (cg/Cpyaxl, Substituting these limits into Section 3.2 (and in
particular eqn (3.8)) leads to the erroneous conclusion that 1 — 0. This discrepancy arises
because the use of the Rayleigh reflection coefficlent requires the gradlents on either side of the
boundary to be small.

4., COMPUTATION TIME

4.1 Total Solution Time

The total time taken to obtain a transmission loss solution once a decision has been made to
use a particular model on grounds of validily is made up of several steps, not all of which need to
be repeated for subsequent runs, as [bllows: ' ’

- The lime required for obtaining the model, possibly from abroad, and implementing it.

- Obtaining the necessary Inpul dala and creating lormatted input files.

- Computation time.

- Analysis of outpul, possibly including further computer runs to check for convergence.
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Although any or all of these may be important, the "speed” of a model is usually a reference to
the computation time T. Comparison of T with some acceptable upper limit {which would
depend on the circumstances) can be a useful criterion because it is the one ingredient which is
always present. Compared with the other steps it is also relatively easy to quantify.
Nevertheless the potential user should bear in mind that analysis time (checking the result) is
frequently the biggest single item once a program is fully implemented. In practice this means
thal robustness should be high on one’s list of priorities, irrespeciive of application.

Estimates of compuler time used by several common models for a point source in a range
independent environment are as follows:

4,2 Parabolic Equation CPU Time

For a Gaussian start-up field CPU Time [14], the CPU time taken for PE models for a point
source in a range independent environment to compute the sound field to a maximum range r is
approximately

'H,P:A],F_.H"_Ei 4
: " 6H or (4.1)

where Hpg is the total computation depth which must exceed the waler depth by an amount
depending on the extenl of acoustic penetration of the sediment. The siep sizes 8H, dr are
typically around 4/4 and hence

HPEr

Thr ~ 1
PE ~ 16ApE I

(4.2)

although substantially smaller or larger values may sometimes be appropriate, especially in
range-dependent environments. In princlple, it Is possible to vary 8H and 8r as the solution
marches in range choosing small steps only when it is necessary io do so [17].

Some implementations allow a normal mode slart-up field which will involve an overhead
similar in magnitude to Lthe value of Tym legn (4.3)).

It is worth'bearing in mind that PE models calculale the entire 2D field automatically so that

there is no overhead for multiple receiver depths.

4.3 Normal Mode CPU Time _
If only one receiver depth is calculated, the CPU requirement for a normal mode program tends
io be dominated by the numerical calculation of eigenfunctions and corresponding eigenvalues.
The solution time varies greatly according to the method - for SUPERSNAP [18] which uses a
matrix method devised by Porter & Reiss (Reference 19), it is

H 2
T A — N s
NM NM (SH) modces {4.3)

where 6H 1s the eigenfunction sampling distance used in the matrix solution, and is typically
around A/50. Assuming that Noges (the number of modes) is approximately H/A, this then gives
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H\%/2
Tym ~7ANm (I) . : (4.4)

4.4 Fast Field CPU Time .
As with normal mode programs, computation time for the fast fleld meihod can vary greatly
according to the implementation. For SAFAR! [20] it is given by

Trr -Apr NLNFpT ' (4.5)

where Ni, s the number of layers used (the number of peints in the sound speed profile) and Nper
is the number of points used to perform the discrete Fourier Transformn, which for a wide angle

run is just r/A, ie '

T L . .
Trr ~ NLAFF;L - : , (4.6)

This linear dependence on [requency means that at high (requency, SAFARI is more
economical than either normal mode (Tyy ~ 12/2) or parabolic equation (Tpg ~ [2) programs. In
particular, (comparing eqn (4.2) with {4.6)) Tpg will exceed Tgr at all frequencies above

NLAFF . ¢©
" 16 Apg Hrpg
which in deep water (eg. Hp: = 5,000m, Ny, = 20) can be as low as 20Hz.
4.5 Ray Trace CPU Time -
The computation time required by the ray tracing program GRASS [21] is given by
Trr ~ART Nrays L o , 4.7)
or Co o

It is difficult to make general statements about how the range step &r {the horizontal distance
between adjacent receiver positions) and the number of rays Npys should vary with frequency
and water depth. Typical values for coherent calculations in deep water at 1kHz are Nrays ~5.000
and 8r ~50m, although substantial savings in both are possible for incoherent intensity
calculations.

4.6 Constants of Proportionality

The absoclute values of the "constants” Apg, Anm etc can of course vary by orders of magnitude
from one computer Lo another although hopefully their relative values will stay roughly
constant. Order of magnitude values based on the author's own experience for typical problems
fora VAX 11/750 are

Apg ~ 103s

Anm ~ 10°s

Afpp ~ 10'1s

AT ~ 103s
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Nevertheless, exceptions are common. For example:

- The value of Apy is reduced by an order of magnitude if only isovelocity layers are used in
SAFARI.

- The expressions for Tym. Trr and Ty will require modification il a large number of receiver
depths are required (eg. for a contour plot).

5. SUMMARY AND CONCLUSIONS

Criteria are presented for making an objective selection of a propagation model, based on a
compromise between the accuracy-of the models’ approximations involving propagation angle,
and computational speed. The effective angle theory is developed initially for low frequency,
deep water propagation (Section 3) although in Section 3.6 it is shown how it can be applied to
high frequency and/or shallow walter. A useful rule of thumb is given in Seclion 3.5 for deciding
whether or not angles are an issue at all. The CPU time requirement for a number of different
types of model are discussed in Section 4.

The criteria could be used as parl of a logic tree which also took into account the wider questions
of applicability and practicality described in Section 2. The procedure could even be automated
to provide expert advice on which model to use with reasoning, along with recommended values
of numerical input parameters. Eventually, one can envisage a situation where a computer
system selects and runs a computer model without the user belng involved beyond giving
acoustic input parameters and the relevant practical constraints.
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APPENDIX - CALCULATION OF TRANSITION RANGES rg;, AND rag

Direct Path to Bottom Reflection
At low [requency in isovelocity water, the interference between the direct path and a single
surface reflection results in the well known Lloyd's Mirror formula

4 kzgz
Ipp = —zsinz—s-—r- (A.1)
T T .

and the bottomn reflected intensity is [8]

cos?6g. 2
Iyl = 16—2 sin“(kzgsin®y)sin® (kz, sinfyL ) R (A.2)
r

Assuming R << 1, it is clear that Ipp will always exceed Ig). on average. until r exceeds kzgz, and
the DP begins to fall off as r'4. The range at which the transition takes place (rg) can therefore
be found by replacing the sin? functions by either their mean value 1/2 (in the case of BL) or
argument kz.z. /1T (DP), je.
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C N2
kugzr 4 R
q > = P (A.3)
THL Ig, + 4H

a quadratic in rg 2 whose solution is

i = (2HI32)2[% + ("i + ﬂ“.‘) 1/2]. (A.4)

Noling that the factor in square brackels is equal to 1 for large f and B2 for small §, we can
write, very crudely

rsL Z2H max (8.8%) : : (A.5)

Bottom Reflection to Bottom Refraction
- At sufliciently long range {such that Our << ¢'H/c}, the expression for bottom refracted intensity
{see Reference 8) is very similar to eqn (A.2)

: cos?p :
BR 2 . i 2 '
Inp = 16 — sin“(kzg sinbpp) sin“(kz, sinbgr)} R (A.6)
- r

where R' is the effective reflection coefficient for the refracted path caused by volume
attenuation in the sediment, and for a sediment path length s, is given by exp {-2kes].

At long range, the small grazing angles result in correspondingly small sediment path lengths
and eventually R' tends to 1. When this happens the BR returns will dominate the sound field,
with the cross-over (BL to BR) occurring when R and R are approximately equal, ie.

In(1/R) = 2kes ' A7)
where
_ 2c

S - FQBR . (A.8)

Replacing bgr with ils long range approximation 2H/rzp in eqn (A.7) it {ollows siraight away
that

4Hn

"BR = H/R

(A.9)

This then is the range for the BL-BR transition, subject to a lower limit diclated by the shadow
in the refracted path. The position of the shadow is given either by the caustic range if there is
one
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Hcy'#2
e
o

or if not, by the ray which just grazes (he bottom of the sediment. In either case, the shadow
boundary is at ry, as defined by eqn (3.15).
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