
 

V Proceedings of the Institute of Acoustics

MASKING OF‘ CODING/DECODING ERRORS IN AUDIO DATA COMPRESSlON SYSTEMS

Michael A . Gemon

Technical Consultant, 52 Walton Crescent, Oxford 0X1 ZJQ

1. INTRODUCTION

Recently, a variety of different systems have beenpmposed for reducing the

data rate of high quality digital audio to between two andfour hits per
sample All such systems introduce encoding/decoding errors, and rely
on these errors being masked by the wanted signal in order to achieve high

‘ quality results. Despite the proposed systems substantially meeting the

conventional requirements forgood masking of errors. many experienced audio
professionals have expressed reservations about such systems. The aim of this
paper is to present evidence that conventional masking criteria are indeed
inadequate. and to note that effectivemasking thresholds can be reduced by as
much as 30 dB in some circumstances.

Specifically, we note that well-known psychoacoustic phenomena suggest that
conventional models of spectral maaing break down when there is a substantial
degree of cross—correlation between the error-signal and the wanted signal.
He specifically examine the effect of correlated errors that cause gain
modulation of the wanted signal. Such errors are audible even at a level of
36 dB below the signal, although their audible effect is not that of a
spurious noise, ml. is that of a change of the character of the wanted signal.
We then go on to demonstrate that all Shannon-efficient coding systems using
Max quantlscrs (Le. quantisers with minimum error energy) cause significant
gain. modulation effects that, in currently proposed systems, are well above
even a conservative nudibility threshold derived from the literature.

These results are of some importance. since they suggest that existing
approaches to low-bit-mte audio data compression. based on using spectral
masking of cnors with a high coding efficiency, are going to lead to audible
alterations in the character of signals akin to those encountered with mis-
tracking analog noise reduction systems. Possible means of getting round
this problem. at the expense of a small loss of theoretical coding efficiency,
are discussed.

2 . SPECTRA L MASKING

Providing an error is substantially coincident in time with the wanted signal,
the general theory of spectral masking asserts that one can predict whether or
not the error is masked by the wanted signal solely from a knowledge of the
power spectrum of the wanted signal and that of the error-signal. Given the
power spectrum of the wanted signal, one can compute from it a threshold e
spectrum such that if the error power spectrum lies below this threshold
spectrum at all frequencies, then the error will be inaudible. Although the
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precise procedure for computing this threshold spectrum from the wanted—signal

power spectrum is somewhat uncertain. it is generally agreed that the

following is a good first approximation.

One can determine experimentally the spectral masking threshold for narrow

bands of noise for a masking sine wave signal at each frequency and level.

It is found that if the noise band is close to the sine wave frequency (say

within the critical bandwidth — around 0.2 octaves at middle frequencies).

then the noise is masked by the signal if it is between “dB and 7dB lower in

level. and the masked level of noise falls away rapidly as the difference of

the frequencies increased. This masking curve resembles the energy spectral

response of a moderately high Q tuned filter. To determine the masking

threshold spectrum for a more complex signal than a sinewave. one normally

convolutes the wantod—signal's power spectrum with a convolution kernel.

valying with frequency, rcsprescnting the masking threshold for the energy

within a critical bandwidth of'each frequency. If any error signal is below

this computed threshold, or below the absolute threshold of hearing at any

frequency, it is presumed to be inaudible.

It is not our intention here to give any detailed model along the above lines

for spectral masking, only to indicate the general type of model that is

widely used. Our reason for doing this is to note that such a model is

clearly 5 1y incorrect in some situations. and that the spectral masking

model desc lbed in this section cannot be relied on, whatever the subtle

detailed modifications may be made in the way that the threshold spectrum is

computed. We claim that the spectral masking model is conceptually flawed at

a fundamental level.

 

3 . C UNRELATED ERRORS

We now demons: rate the fundamental flaw in spectral masking models: namely

that, for a given masking signal. two error signals having the same power

spectrum may be masked to very different degrees. In other words. the

spectrum of the error is not enough. on its own, to predict whether or not it

will be masked.

The demonstration of this is remarkably simple. 'It is known that gain Changes

in a sine wave of the order of 1 dB are audible. and that at mid frequencies

and levels. gain changes of as little as 0.3 dB can be heard. Consider a

wanted signal leL is a sinewave of frequency F :

sin (21"F‘t)

and an error signal of the form

a(t) sin(21rFt)

where a(t) is a low-freqnnnw waveform. having no frequencies above around ZUHn

or so. Then the effect of the error signal is to modulate the gain of the

sinewave by 1 + a(t). If the amplitude of a(t) varies between :0.016. then

there is a gain modulation of about +0.15 dB. giving a gain variation of 0.3

dB. For a sufficiently long duration of these two extreme gains. the
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resulting 0.3 dB gain change will be audible. However, the energy of the
actual error signal here is 36 dB below the wanted signal. Thus we have
shown that, in some circumstances. an error signal within the critical band-
width of the wanted signal can be heard at a level 36 dB below the wanted
signal. This is a level about 30 dB below the conventional masking
threshold.

There is nothing very controversial about this observation, since one's
common sense would prevent one using spectral masking theory in such a
situation. However. this example shows that one has to be very careful in
using spectral masking theory to ensure that one is only applying it to
errors of a suitable kind - and it is evident from the above that errors due
to amplitude modulation of the wanted signal are not "of a suitable kind". We
shall show in the next section that. unfortunately. conventional Shannon—
efficient audio data compression systems do produce substantial amplitude
modulation effects.

what is it about amplitude modulation errors that render them less liable to
masking than noise-like errors of a similar frequency? Although we cannot
produce entire‘h/ definitive answers, it seems likely that a large part of the
answer lies in the degree of cross-correlation between the error and the
wanted signal. The short-term cross-correlation between two signals f(t) and
g(t) at time 1. may be defined as the integral

I w(t-t')f(t'——}1)g(t'+—$—1’) dt' = cu(r.t)
where the weighting function w is a positive function of total integral 1
which is typically nonzero for around 50 ms. As the duration of the
weighting function gets longer. this approaches the ordinary cmss-
correlation. The Fourier transform of the short-term cross-correlation with
respect to the 1'. variable is termed the (short—term) cross—spectrum of
[(L) and 5(1.) at time t. The short term cross-spectrum of f(t) with itself
is, 01‘ course. the conventional power spectrum of f(t) windowed by the
weighting function w(t).

The real and imaginary parts of the cross-spectrum of the wanted signal with
the error signal provides the information missing from a knowledge only of
the spectra of the wanted and error signals. Until demonstrated otherwise.
we can continue to assume that, when the cross-spectrum of signal with error
is zero, then spectral masking criteria can be used safely. However.
amplitude modulation errors cause the real part of the cross-spectrum to
become non-mom. and phase—modulation errors of the wanted signal cause the
imaginary part of the cross—spectrum to become non—zero. It is necessary to
determine by experiment separate cmpirical'masking curves for the real and
imaginary parts of the cross-spectrum. From the arguments given earlier,
we know that, depending on frequency. the masking threshold for the real
part of the cmss-spectmm can be as much as 36 dB below the level of the
wanted—signals power spectrum at the same frequency.

The masking threshold for the imaginary part of the cross-spectrum is less,
certain. Although random phase modulation is known tolbe significantly less
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audible than the same sideband error energy in the form of random amplitude
modulation , we cannotsafely extrapolate this result to the case where

amplitude or phase modulation is strongly signal-dependent, as empirical
experience in the design of dynamic filters demonstrates. In these devices,
phase-modulation effects have been found to be at least as disturbing as
amplitude modulation effects of similar magnitude.

Until more experimental data is available on the audibility of cross-spect-
ral error components is available, we cannotgive precise figures about

cross-spectral masking thresholds, but we can say as a matter of general
experience that these thresholds are considerably lower than for uncorrelated
errors - perhaps 20 dB or 30 dB lower.

The audible effect of cross-spectral error components is generally quite
different to that of uncorrelated errors. The latter have the quality of
being an added unwanted sound to the wanted sound. Errors in the real part of
the cross-spectrum cause an "unstable" quality, sometimes described as “pump—
ing". which is familiar in mistracking analog noise reduction systems or
dynamic processors. Errors having an imaginary cross-spectrum with the signal
suffer from an effect known subjectively as "phasing". where audible alterat-
ions of pitch of some signal components are heard. In general, cross-spectral
error components manifest themselves as an alteration in the quality of the
wanted signal. and not as an added separate sound. It is possible that
critical high—quality program material, such as that recorded with simple
stereo microphone techniques in natural acoustics, conveying an accurate
portrayal of ambient distance cues for sound sources. may be damaged by much
smaller cross-spectral errors than those discussed above (gain errors well
below 0.1 dB of gain modulation might be audible in such criticalcases).

In the absense of detailed experimental information. it is advisable to keep
gain modulation error well below 0.3 dB, and it is possible that it might be
wise to prevent them altogether if at all possible.

U. CAIN MODULATION IN EFFICIENT CODING

There is a long-established theory, known as Shannon Rate—Distortion theory
[2]. that allows oneto determine how low a bitrate a given signal, with a
known power spectrum. can be coded into if one puts an upper bound on the
spectrum of the error signal. Although this theory has some difficulties (it
strictly applies only to Gaussian signals, and is more difficult in the
non-Gaussian case). it is a good guide to how efficient a coding system can be
made, and practical coding systems, such as those using, principal-value
transform coding [3] or adaptive differential pulse code modulation (ADPCM)
[U] can come quite close to the Shannon bounds in performance.

However, the Shannon theory, which we shall not attempt to summarise here. is
based on coding signals to achieve a given error-signal power spectrum at the
lowest possible bit rate. without taking any account of whether or not there
is a non—zero cross—spectrum between the wanted signaland the error signal.

There seems to have been much wishful thinking on the part of many workers in
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audio data compression systems in that they seem to have assumed, or hoped,
that either cross—correlation of the error is unimportant. or else that the
error in a Shannon-efficient coding system has the form of an amplitude-
modulated (but not necessarily Gaussian) random noise signal. We now show
that not only is the first assumption false (as shown in section 3), but that
the second is untrue also. We are unaware of any result in the existing
literature about whether or not the error signal in Shannon-efficient coding
is cross-correlated with the wanted signal. If it is known. it is certainly
not generally known to workels in the field.

We shall now outline a proof that the error signal in a Shannon-efficient
coding system. and in systems practically approximating efficient coding,
is cross—correlated with the wanted signal, and also , _
that the magnitude of this cross-correlation is large enough to be of concern
in pmposed systems.

Our argument is a simple geometric one, which to most readers will be a
handwaving, hit hopefully plausible, argument. However. to those with a
knowledge of Hilbert space techniques, we note that the argument is actually
a mathematically rigorous one in Hilbert spaces of signals.

We can represent the wanted signal by a vector or arrow 5 whose length from
the origin is equal to the square root of the signal energy. See figure 1.
Denote the length (i.e. square-root of energy) of S by 35" . and similarly for
other signals. An encoding/decoding or ouantising system will produce a
modified signal which we shall write as 05, and this can be represented as a
second vector pointing in a different direction to S, since it is a different
signal. The error signal

LS =S-QS

can be represented as a third vector along the third side of the trianglo
formed by the vectors S and 0.3 as in figure 1.

Now a Shannon-efficient coding system, or the so—called "optimum" or "Max"
quantisers L5] used to quantise the signal components in practical proposed
coding systems. aim to ensure that the error-signal energy (suitably weighted.~
is minimised. i.e. that the length of the error vector as is minimised. For
a given direction of the quantised or coded signal vector Q3. this means
Lhat the error vector as is at right angles to the coded signal vector 05.
(See figure 2). By Pythagoras' theorem, we have that

1an = Hosllz +112an .
and also the cross-correlation of the error signal with the coded signal 95 is
zero. since the two vectors are at right angles to each other. However. since
the error signal as is at at right angles with the wanted signal S, there E
a cross—correlation between the error and wanted signals. This can be seen
from figure 2, where the component of the coded signal as correlated with the
wanted signal S is the orthogonal’pm-Jection of 93 onto 5. which
by simple geometry equals »

(nosu/llsU)2 s .
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which has lerE'LhHQSiIZ/llsll. Thus the component of as that is correlated with
the wanted signal S has amplitude gain

(UQSl‘/Iisii)2 = 1 — IIeSHZ/HSIIZ,
which varies according ‘to the relative energy of the error signal. This
proves that the correlated component of the coded/decoded signal is subject
to amplitude modulation, and also that the component of the error signal as
correlated with the wanted signal has amplitude gain '

“cSNZ/IISHZ .
Now Shannon Rate-Distortion theory suggests that for a coding system
using B bits per sample. then for efficient coding.

liesilZ/IISIIZ = if” .
For practical codint systems that quantise signal components using Max
quantisers (see the degree of amplitude modulation is somewhat greater.
The data of J. Max show that, for Gaussian signal statistics, a Max
quantiser produces a reduction of signal gain for the correlated component of
the coded signal of approximately b'mz dB, i.e. about 1i» dB gain reduction
for a 1-bit Max quantiser. 1 dB gain reduction for a 2-bit Max quantiser,
0.25 dB gain reduction for a 3—bit Max quantlser, and about 0.06 dB gain
reduction for a 4-bit Max quantiser.

Practical efficient coding systems quantise the different transform signal
components using a variable number of bits (this is termed "dynamic bit

allocation"). so that the amplitude gain of these components is not fixed,
but varies dynamically in a signal-dependent way from moment to moment. Even
systems using an average of Li bits per sample will allocate as little as 1 or
2 bits to some audible Signal components, so that we can conclude that
currently used coding strategies produce a signal-dependent amplitude
modulation of audible signal components of about it dB. This is over ten times
the 0.3 (113 known to be audible from standard results on audible gain changes.

5. REDUCING MODULATION EFFECTS

Given that we have a problem with amplitude modulation of the wanted signal,
the question arises of what we can do about this effect. The first comment to
make is that we need good psychoacoustic data on the audibility of signal-
-dependent gain modulation, not just on test tones. but also on high quality

signals containing complex natural acoustic cues, since there is reason to
believe that subtle variations in signal-envelope information may be
important in the ears' interpretation of complex cues.

Cne can certainly my that reducing amplitude modulation effects means
departing from very high Shannon coding efficiency — since we have shown that
the amplitude modulation is a consequence of minimising error energy. Two

main strategies exist for reducing amplitude modulation. The first strategy
is simply to modify the reproduced gain of quantised signal components to

avoid amplitude modulation. The second strategy is to use a dithered
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quanti ser .

Modifying the gain of quantised signal components so that the correlated coded
signal components avoid amplitude modulation means increasing the gain of the
Max—quantised signal Q9 by a gain IISUZ/HQSHZ, which also has the effect of
increasing the error energy by the same factor, and of increasing the noise-
like component of the error energy uncorrelated with the wanted signal by the
square of this amount. In practice, this means that an increased number 01‘
bits is needed to ensure effective masking of the low-bit transform
components. requiring a slightly altered bit-allocation strategy.

However, there is a problem with this proposal - namely that it assumes that
one actually knows what the optimal Max quantiser Q is. his depends on
knowing reliably the instantaneous signal statistics. In practice, there is
considerable uncertainty as the exact momentary signal statistics. and this
uncertainty causes considerable unpredicatable amplitude modulation of the
correlated component of the quantised signal. Although this requires further
theoretical study, our provisional conclusion is that the practical amplitude
modulation effects for components at low bit rates will remain serious.
although a careful choice of quantiser characteristic can minimise the gain
effect of quantiser/signal statistics mismatch — at the expense of a further
loss of Shannon efficiency.

The second option is to use a subtractively dithered quantiser, as originally
described by Roberts This involves adding a. pseudo-random dither noise
signal before the quantiser, and subtracting the same dither signal in the
decoding process. Such subtractive dither ensures that the error signal is
noiselike, and guarantees no amplitude modulation of the correlated component
of the coded/decoded signal. There are two snags here. First, subtractive
dither decreases the signal-to—noise ratio of an n—level quantiser to that of
an (n—1)-1evel quantiser. Secondly, subtractive dither is only applicable to
uniform or so-called linear quantisers with equal step sizes, which
complicates the task of optimising the quantiser coding performance to match
the signal statistics. In particular, it is important to limit the amplitude
of signals to be coded so that they do not exceed the peak level of the
quantiser - otherwise one gets clipping distortion (which also modifies
amplitude gain).

We hope at a future time to publish detailed results on methods mducing
amplitude modulation effects in low-bit-rate audio coding systems using mask—
ing, but space precludes dealing with the required theory here.

5. S‘I’EHEO DlRECTIOhAL MASKING

Another effect invalidating the use of conventional masking theory must be
mentioned. For stereo signals, error signals lying in a percieved stereo
direction different to that of the masking signal will be more audible than
those in the same direction. To maximise stereo directional masking, coding
systems should be designed to ensure that error signals have substantially
the same stereo distribution as the masking wanted signal. This means either
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using a principal-component quantisation method for the full stereo signal. or

a stereo matrix prediction filter. Existing systems simply quantise the

stereo signal as separate mono channels, and so do not maximise directional

masking.

7 . CONCLUSIONS

we have shown that low-bit—rate audio coding systems produce amplitude

modulation effects that are not masked according to established models for

error masking, and also noted that stereo systems might also directionally

unmask errors. These problems are likely to be serious for existing

proposed systems, producing significant subjective "pumping" effects. Methods

of reducing these problems. at the expense of a. loss of Shannon-coding

efficiency, have been discussed. tut these require modified encoding/decoding

strategies and algorithms.
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