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ABSTRACT

The sound propagation in the core of a liquid metal cooled fast breeder

reactor is examined. The reactor core is a complicated anisotropic medium.

It consists of hexagonal tubes which form a honeycomb-like structure

immersed in a liquid and filled with densly packed fuel rods. This medium

is modelled in the following way. The hexagonal tubes are replaced by

parallel walls which are connected by angular plates in regular intervals.

This structure is immersed in liquid, and embedded in the liquid is a large

number of small masses to represent the fuel rods. The periodicity of this

medium allows Bloch's theorem to be used. The speed and attenuation of

sound depends on various parameters. (e.g. angle of incidence, frequency,

mass of the tubes), and their influence is predicted. The scattering of

sound at the angles of the hexagonal tubes is also discussed. Information

about the sound propagation is important for acoustic fault location

techniques which are based on the transit times of sound signals.

1. INTRODUCTION

The core of a liquid metal cooled fast breeder reactor is a complicated

anisotropic medium. It consists of hexagonal tubes (sub-assemblies) which

form a honeycomb-like structure immersed in a liquid and filled with densly

packed fuel rods (fig.1).  
fuel rods
cooling liquid

sub-assembly

Fig. l Cross-section through the reactor core

Our aim is to model the sound transmission properties of this medium. The

medium has the following characteristics:

(1) Inhomogeneous medium inside the sub-assemblies,

(2) complicated hexagonal geometry,
(3) interaction between liquid and structure.

(A) periodicity.

We consider these points and make the following assumptions.

(1) The fuel rods are represented by a large number of small masses

distributed evenly throughout the liquid. The medium composed of liquid and

masses is isotropic. The speed of sound is different from that in pure

liquid. This will be discussed in section 2.1.

(2) An accurate calculation of the sound field in the hexagonal geometry of

the reactor core can only be done with great numerical effort, e.g by the

finite element method. We simplify the problem by modelling the

sub-assemblies as walls connected by angled plates. A cross-section of the

model is shown in fig. 2.
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Fig. 2 Cross-section through the model for a group of sub-assemblies

We shall calculate the sound scattered by the joints between walls and
adjacent plates in section 2.2. It will turn out that the scattering is
neglegibly small. .
(3) The motion of each well is described by the bending wave equation with
a force term caused by the action of the springs. In the liquid between the
plates we have plane waves which are partly reflected and partly
transmitted when they hit a well. At an interface between a wall and a
liquid layer we assume the usual boundary conditions of continuity of
velocity and the momentum balance.
(5) The periodicity of the medium allows Bloch's theorem [1] to be applied.
A full description of the model for the periodic medium is given in section
2.3. In section 3 we shall present and discuss some numerical results.

2. ANALYSIS OF THE MODEL

ed te d nsdtesub—se
Liquids with suspended particles can show an unusual acoustic behaviour.
The calculation by Crighten et al. [2] of the low frequency sound speed of
a bubbly liquid also holds for a liquid with immersed little masses. The
speed of sound in this medium is given by

2 a 2 2l 3 p c +p c
——1 — 1 v) 4- § +v(l-v) —22 m m , (1)
2 2 2 z

elm C! m fllpm c2 cm .
where C! and cm are the speed of sound in the liquid and in the metal from

which the masses are made. respectively. pl and pm are the density of the

liquid and the masses respectively. and v is the volume concentration of
the masses. This result is valid for low frequencies where the wavelength
is much larger than the diameter. of the masses.
For v-0.28. c2-1465 m/s (water)I cm-SOOO m/s (steel), pl-lOOO kg/m’,

lam-8000 kg/ms we get elm-1000 m/s, ch“ is lower than cl because the inertia

of the masses prevents sound waves from propagating with the same speed as
in pure liquid. '
Throughout this paper we give the numerical results for water instead of
liquid sodium because water is more suitable for future experimental checks
of our model.

2 2 Sound scattering at the jgintg
In order to estimate the sound scattered at the joints we look at two
adjacent connected walls and the liquid layer inhetween, separated from the
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rest of the medium as shown in fig. 3.

   th "

\incident wave
Fig. 3 Cross-section through two walls connected by springs in regular

intervals

The pressures on either side of both walls are denoted by p,. 1):, h. p"

and the y components of the Velocities by u,. u,. up u. (fig. 3). The

walls are assumed to be thin compared with the wavelength so that the
velocity is the same on both sides of a wall. ul-u1, u,-u.. There is no

restriction on the thickness of the liquid layer. The motion of the walls
can be described by the bending wave equation.

  

in i
a ‘ - kg u. - - B— (p. -p,> 4,3 2 F1“ mm“). as)
X n

a‘u,
i i_ k; ua - . 3—" (1:03 - p.) - E! 2 F2n 6(x-xn) . (2b)

3)“ n

B is the bending stiffness (per unit length in z direction) which is, for a
plate of thickness d and Young's modulus E, approximately (see [3], p.280)

EelS
B - f . (3)

kB is the bending wave number, it is given by

< - in!RB B . (A)

where u is the angular frequency and m the mass per unit ares of the well.
F1“ and F2n are the forces exerted on the two walls by the springs and 5 is

the 5-function. According to Hooke's law.
DF1n - ~ F2n - E (u,(xn) - u,(xn)) . (5)

where D is the stiffness of one of the springs per unit length in z

direction.

The time factor is ed”: and it is omitted throughout.

Fourier transform of (2) with respect to x yields
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' in A A iv ‘1kxxn
(k; - kg) “1 - - E— (P; ' P3) ' 3— 2 F1“ 6 . (55)

n

. . ' is A A in 'lkxxn
(kx - kn) u, - - E- (P. - P.) ' E— Z F2n e . (6b)

n
where):x ia the x component of the wave number vector.

In the medium between the well: we have backward and forward travelling

  

-waves,

. ik y A -ik ik x
1P(x.y)-Ef(p+ey+p_e yy)exdkx, (7)

A ik A -ik ik x
1

u(x.y) - E; f (u+ e yy + u_ e yy ) e x dkx , (8)

where

2

2‘: 4:; forkx<ci
1m in

k - 9y ()

2

.‘;’ +k= fork >i_
C X X 3
Jim in

p and u are solutions of the two-dimensional wave equation.
Relationships between the pressures p,. p,. p,, p‘ at the wall sufaces and

the wall velocities u,, ua are obtained from the usual boundary conditions

of continuity of velocity and validity of the momentum balance at the
interfaces between liquid and well. The results are

A _ up!“ A

P1(kx) ' 2 Pi 5(ki'kx) ~ ‘fi;— “,(kx) . (10a)

A up 2 um: ) - u,u< > (a‘ky’ + (“‘y’)
(k ) - A“ —l‘————L————— (10b)’2 x k ikl -ik 1 '

yv* ey*-e ykl ik!.A top —2 u,(k)+u,(k) (eiy +e' y)
M" ) ' %W. (10:)

x y e - e y
A wpzm A

p.(kx) - T u,(kx)\ . (10d)

where it and k1 are the amplitude and the x component of the wave number

respectively of the incident wave. is the density of the medium betweenp
In

the plates. If (10) and (5) are inserted into the bending wave equation(6)

a set of coupled equations for ul(kx), u,(kx). u,(x) end u,(x) is obtained,

It is possible to decouple these equations and obtain explicit equations

for u,(kx) and u,(kx) with Stephanishen's approach (A, appendix] who
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analysed a single periodically supported plate. The manipulations and the

results are rather lengthy so we omit them here and only present the

numerical results.

We calculated the wave number spectrum for steel walls connected by springs

with the stiffness of an angled plate (angle 120 degrees) which represents

two adjacent sides of a hexagonal tube. The medium between the walls is

that described in section 2.1 and the dimensions are [-0.07 m, d-0.003 m.

A-0.07 m. The spectrum of the transmitted wave has non»zero components at

kit g—Zn (n integer) which (for m0) are at least a factor of 10’ smaller

than the component k1. This is the case for all frequencies, even for

critical ones, e.g. where the bending wavelength coincides with the

distance between adjacent springs. These results Show that the waves

scattered at the joints are unimportant.

2,} Model :0; the periodic medium

We now consider an infinitely extended layered medium, a section of which

is shown'in fig. 1».

 

Fig. A Cross-section through the periodic medium

we neglect the scattering at the joints so that we need to deal with only

one wave number.

The pressure and velocity field in a liquid layer. erg. the one between y-d

and y-£+d, is composed of a backward and forward travelling wave,

   n: (y-z-d) -ik (y-l-d)
p(y) - A e v + n e Y , (11)

lk (y-l-d) -lk (y-z-d)
u(y) - A “Sc” " - “5 9 e y (12)

‘sz 1m pimclm
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The x dependence e‘kxx is omitted throughout this section. (11) and (12)
can be used to relate the field quantities at the two well surfaces y-d and

  

y-I+d,

P2 " “n P: + 4x: “s u (138)
“2 ' an P: + an “a v . (13b)

with

a” - cos kyl , (143)
p c
1m ina” - -i “s a sin kyi . (1M?)
cosfl

an - - . sin k E , (lfic)
Pimclm y

en - cos kyl . (14d)

This matrix notation is very useful, because a relation like (Ha/b) with
the same matrix coefficients holds for the field quantities on either side
of any liquid layer.
As in section 2.2. the wall motion is described by the bending wave
equation. For the wall between y-O and y-d, we can use equation (2) with a
modified force term,

  

B‘ux F - F1k, in, n: 2:
'k‘“:'-—(Px‘P2)-— . (15)ax‘ 3 B B S

where

D DF“ - E (uI - ua) and F“ - 1—” (u, - u,) (16)

are the forces exerted by the springs in the adjacent liquid layers. g is

the stiffness per unit area in the xz plane.with uI-u2, (15) can also be

written in matrix notation.

P1 ' bu P: + bu U: . (17a)

“1 ' b2: P: + ha: “a 1 (17b)
with

b“ - 1 . (18a)
D2 m (an-1) + z_

b” —D_ . (18b)
1 ' m 521

b“ - 0 , (18c)

b" - l . (13d)
Z is the impedance of the wall [3, p.281].
We now apply a form of Bloch's theorem [1] which relates field quantities
at points that are exactly one period apart.

P1 " 37 P: I (19“)

u, - e7 u’ . (19b)
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The real and imaginary part of 1 are related to the speed of sound and the

attenuation in the composite medium. By combining (13), (17) and (19), we

get a homogeneous set of two equations. and 1 can be determined from the

condition that the determinant has to be zero. The solution is

(4“ + c“) 1 J (t:H + c“)5 - A

1 - In . (20)
2

where cll and (:H are the diagonal elements of the matrix that is obtained

 

when multiplying the matrices bL1 and ajkt ‘

The speed of sound can be found to be

 

l
c - ———-— . (21)

sin’D (Imaga)
c} u7(2+d)’
m

and the spatial attenuation

a _ Real 1 I (22)

3. NUMERICAL RESULTS AND DISCUSSION

Equations (21) and (22) were evaluated numerically for the geometry and

material properties given in section 2.1 and 2.2. Our calculations show

that for low frequencies, waves can propagate through the composite medium

in any direction without attenuation. At higher frequencies, there are

ranges of angles where propagation can take place (passing bands) and

others where the attenuation is so high. that there is an exponentially

decaying near field (stopping bands). Examples are shown in figures 5a and

5b. 5 0‘
. -|
van2:

S

  
u 0.4: 0.1.: em! on as: 9 0 on: 0.1: on. an 95.— 9

Fig. 5 Speed of sound (solid line) and attenuation (broken line) as a

function of the propagation angle

(a) frequency 3 kHz (In) frequency 10 kHz

The speed of sound in the composite medium is considerably smaller than

that in the pure liquid (:2) and also smaller than that in the mixture of

Proc.l.O.A. Vol 10 Pan 2 (1988) 679  



 

Proceedlngs oi The lnsfltute ol Acoustics

SOUND PROPAGATION IN A FAST BREEDER REACTOR

liquid and masses (elm). This is because the walls also represent extra

mass which further slows down the sound waves, The stiffness added by the
angled plates is expected to increase the speed of sound, but this effect
is very small for the geometry considered.
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