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INTRODUCTTON

This paper highlights the results of a two-phase study of acoustic
diffraction by a barrier located on an impedance (locally-tcacting)
ground plane. The First phase was directed towards the de.-lopment of a
new asymptotic serles solution to the problem of diffraction of a
spherical-wave by an impedance covered plane. The solution is accurate
and rapidly convergent, and is valid for all angles of incidence from 0°
to 90°, and for all values of ground impedance {except Zy = Z/pec = 1).
The final solution is given in a form that is readily programmable. The
second phase was to incorporate the new ground diffraction solution into
a previously developed edpe-diffraction model [I] based on Keller's
Geometrical Theory of Diffractf{on and Kendig's impedance-covered half
plane solution [2]. The net result was the "Edge-Plus-Images” model,
which can be used to predict the attenuation or insertion loss of a
barrier located on an impedance ground plane.

Ground Propagation Sclution

A point source located at an arbitrary position above a perfectly

flat impedance plane 1s shown in Fig. 1{a). To determine the Field at a
recelver polnt, an Integral representation for the Helmholtz equation In
cylindrical coordinates is solved using transforms, and a series of
variable transformations is applied to the resulting fnversion integral
to make it readily integrable. A Taylor series expansion of an
integrand term, followed by a termby-term {ntegration provide the final
solution. The "asymptotic™ nature of the solution arises From
integrating the Taylor series beyond its radius of convergence. The
derivation is rather lengthy and only the final result will be given
here (see Ref. [3]). Thus, with several ftems defined in Fig. 1(a),

the total field at the receiver 1is:
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Using only the first (n=0)} term in the series ylelds
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a 'form that has been reported by several authotrs. All complex roots are
taken to glve positive real parts.

Fig. 2 compares the attenuation at the receiver (total field divided by
free field) predicted from four different forms of solution--the exact
(numerical integration) solution, the asymptotic series given by Eq.
{1), the first-termonly or "F-tern” solution given by Eq. (2), and the
“plane wave" solution in which § = R, i.e., F =0 1n Eq. (2). In (a},
the ground is very soft (Zy = 0.3 + E0.5) and the path Is very close to
grazing (y = 3°). Above ¥Ry = 3, the asymptotic series is Indistin-
gulshable from the exact selution, although the F-term form is alsoe
very accurate. Furthermore, even for such small Zy and §, the plane
wave solutlon is entirely satisFactory for kRy » 60. Fig. 2(b)
tllustrates the general trend that as source and receiver move away from
the ground {y = 10®), the "ground effects” peak in attenuation shifts to
the left, lowering the cricical values of kR2 above which each solution
hecomes accurate. As shown In (¢), an inctease in ground impedance
cavses the peak to shift to the right and also brings both the Q-term
and the F-term solutions into very close agreement with the exact
solution for kRy values as low as kRy = O.l.
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The Edge-Plus-Images Barrier Model

When a barrier.is present between source and receiver, the influence
of the ground reflections--both before and after diffraction by the
barrier-—must be accounted for. This is done by modeling the energy
flow as a superposition of four half-plane diffracted ray paths:
spurce-receiver, source-recelver Iimape, source image-receiver, and
source-receiver image [see Fig. 1(b)}}. The strength of each
grecund-reflected ray is no longer unity but "Q”, suitably calculated
from Eq. (1} for the particular geometry.

Figure '3 compares the insertion loss (barrier-plus—ground divided by
ground-only} predicted by the Edge-Plus—Images model using the First
term in the series for the spherical wave reflection coeffigient Q to
that using the plane wave reflection coefficlent R .- Also shown are
data calculated from half-plane diffraction theory alone without ground
reflections. As expected, the § and data show their greatest
differences for small kR (R is the total “up—and-over"” source-to-
receiver distance)} or small barrier heights. It may be interesting,
from a design standpolnt, to note the indication in (e) of an
“optimum” harrier height for a given set of conditions.

The question of when to use the full asymptotic series for @, the
first term only, or the simple plane wave reflection coefficient can
only be answered after completing a thorough sensitivity study of all
the parameters involved--barrier height, ground impedance, angle of
incidence with the ground, angle of incidence with the barrier edge, kR
source and recelver heilghts—above-ground, and source and receiver
offsets from the barrier.
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