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1. INTRODUCTION

In the ocean the variations oi sound velocity. due to temperature. salinity and pressure. are usually weak.

though essential Ior sound propagation. But. in the presence of eddies or currents. sudden changes with

range and azimuth oi the velocity can occure at certain depths. Horizontal variations oi the sound speed

cannot be neglected any longer. leading to the use oi three-dimensional models.
In underwater acoustics. the acoustic pressure p is usually taken as the solution of a wave equation in

cylindrical coordinates (r. Z. 8) where r stands lor the (horizontal) range. Z for the (vertical) depth and e tor

the azimuth (in an horizontal plane). The boundary condition at the tree surface. its. in Z = 0. is a release

condition on the pressure : p = 0. At the bottom Z = H. the situation is much more complicated. The simple

case of a perlectly reflective bottom leads to a Neumann boundary condition; = 0 (normal derivative). l

But usually several sedimeMaI layers have to be taken into account. and the bottom is not flat. At infinity

an outgoing radiation condition is usually assumed. It is incorporated. by introducingthe acoustic field v as
the envelop oi the pressure p by the Iomtula :

p(r, e, Z) = HgNko r) v(r. 6. Z) (1)

where Hg) denotes the Hankel Iunction oi order 0 ol the first kind,

The parabolic approximation has been popularized in the underwater acoustics community by ED.

Tappert underthe form:

or I 82v 132v .ko 2
5:570 327+l2382 +t2(n-1)v (2)

in the simplest case (linear approximation). The backscattered waves are not taken into account into the

model. In (2) a reference constant sound speed co being fixed. the reference wave number ko and the

refraction index n(r, e, Z) are defined by :
2

B“o_ _. 2 _ _ -
ko ' co 6"“ " ' c2 (1“ 27.2875) (3’
where i stands tor the source lrequency. B being the attenuation coeilicient in water or sediments and

i=4?
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More sophisticated models can be built, allowing larger apertures ot the source. An example is the
quadratic model at B. Grandvuilletnin developed at C,E.Fl.D.S.M. :

a- L _Lfl 1n?_-1 21v 1121
a: ' 2ko '4k3az‘+( 4 )3??an

2 1 2 2' 1 32 2
+r- (n-1)--(n-1) -—--—-(n-1) v (4)

2 4 “3322

For the sake oi simplicity, we will restrict ourselves to the linear model (2).

2. BO'I'I'OM MODELISATION AND THERMIC FRONTS

The environment is defined by arange r running irorn 0 to Rm, an azimuth a running from 0 to 2 n. and

a variable depth 2 running lrom 0 to H = Zmax (r. 9). The bottom is made of homothetic sedimental

layers, each at them having its own density p and attenuation B. The transmission conditions at an
interiace between medium 1 and medium 2 tor the acoustic pressure are known to be :

p1=p2 ——=—— (5)

in the case oi non horizontal lnterlaces, condition (5) will lead to unusual transmission conditions on the
acoustic field v. involving v and a transverse derivative ot v.
Now1 in order to release the standard quindrical-symetry hypothesis, and allow thetreatment of sloping

ocean bottoms, we use anattine mapping which sends the variable interval 10, 2m“ (r. en onto the

relerence interval 10, 1[, that is :

 

I
z=Zu)(r.e). m(r.e)=zm(r’e) (6)

Setting u(r,e, z) = v(r,e,Z)=v[r, e,

wecanwrite equation (2)intennsotuandz;weobtain:

9L ml,“ ease 99 L+Eefl°+fllafl a
ar_ " mar r2[ae m2 r2036? r2038 3:

elinfl 2 z_’_m L2" 153%
+2311) 9393: + “a” +r2w286IJ322+IZBBJ m

with

_"_D 2 A __La(r.e.z)— 2 (n (r.e.m)-t). b—2ko V (8)
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Let T; = (or, ue. uz) bethe normal unitary vector at the bottom ; the boundary conditions are easily

derivodin r=0 andonlhe surlace z=0z

u(0.6,z)=u°(e.z) u(r.6.0)=0 (9)

At the bottom, 2 = 1. we obtain lrom (5):

Ed-E‘infl-flkuu‘t-l fl‘i-lggflusimgn-O (10)
[3r maraz °]' 7(86 maeazje a: ‘-
Periodicity in e is moreover assumed.

Let us now consider 0 sedimental layers. We shall denote by Z = Zsedq (r. e) the equation oi the
interlace between layers (q - 1) and q. layer 0 being the water layer. and make the following
homolheticity hypothesis :

are constants A“, q=1t,.o. 0<xl<xz<..,<>.°<1

such that Zsedq (r, B)=Aq2m(r,8) (11)

Under hypothesis (11) our change of variable (6) will translmm the Q inlertaces Z = 25qu (r, 9) into

horizontal planes 2 = 1". q = t 0. parallel to the bottom 2 =1.

“no;

I —

o . . W4
. z . Lu. (LB‘I - 3 2:” 1:1,)mi m :— Lem in.)

To take thermic fronts in range and azimuth into account, the environment is split up into d'rllerent zones.
in each zone the sound speed is a lunction ol 2 only and is assumed to be continuous in each layer.
Each layer at a zone has its own attenuation.

 

  
M mllllhctmntlnl _‘. :enu

' . .enll‘._ _.—- “"1
c ' c

. Mill l l VIII-fman: _i_________ __> Iver

XV
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On each interlace (therrnic lront in range or azimuth, interface between layers) we have to derive

transmission conditions in the new variables (r. 8. z).
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3, INTERFACE CONDITIONS

As usual, the equations concerning the different intertaces are obtained using the transmission conditions
(5), the parabolic equation (7) written in each of the two media. as well as Taylor developments lor

u(r. e, z) in the vicinity of the interlace. We thus need to derive lrorn (5) the appropriate transmission
oono’tions on u.

A normal direction 3' a: _0’ along a smooth surlace (a) with equatio

 

(a): C(r.9.Z)=0 ’ (12)

- - -»_ fi 1% i T ‘Isgrvenby tJ-(ar (n91) . ,ae(f.9.z).az(f.9.z))

. . . . . . —-> a 1 3
sothal the normal denvalrve of p Interrns at u grven by (10) writes. settrng VH = 7 g

.32 _ —> —> 5 —> —> 2 a a . %an—VH§.VHU+[mVHm.VH§+m az]az+lk° aru (13)

We check that, in the case olatlat intedace, When C(r, B.Z)=Z-C (C constant)

—> a_c _ 1 . s a _ a _ aVHg—3 and a; — m rmplle a“ - maz - 82

In the general case, the transmission equations (5) across the interlace (a) are slraightlorward from (13):

u1(r,e,z)=u2(r.e.z) on (o) (14)

14—) 2—» But acaui . a;
p—‘[VH§[VHU1 + 6 VH0) E ]+m2 + Iko Eu1 =

_1_—> —> 2-) 3": zagauz , a;
p2[VH§[VHuZ+;VHm¥]+m gaukoguz on(c) (15)

Tangential derivationol(14) combined with (15)leadsinlhe case where % $010 the two relations:

Bu1 = Buz on (a) (15)

i "9 —> 2 a”; - 33p1[VH§.T1I‘U1+Igrad§l 32 + rkO Br u‘ =

1 —> —) z auz . a;
p—2 VH§.Bu2+|grad§I Enkoauz on(u) (17)

—> _ -> i _ fi -> 5 -> 3_C -> iwheregrad _ [vw 32] and 'D’ - az VH+ [m va az vflcjal
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4. PARABOLIC EQUATION SATISFIED BY THE FIELD U ON THE INTERFACE
BETWEEN TWO SEDIMENTAL LAYERS

Under hypothesis (11), the equation ot the intertace can be chosen as :

§(r.B.Z)=m(r,6)Z-A=z-A=O (13)

BC —) k —) , . . —>
and thus 5 = 1 V“; = ; VHm.Th15impIIes:B = V” and (14), (16), (17) read:

u1 (r. e. A) = uz 0.6.x) V; u1 (r. 9.)») = V; uz (r. 8.).) (19)

au Bu 2 1
l—i-i—zr L2|fim12+m2 l-l —V)Hu).V;u onz=l (20)
P1 31 92 31 w F'1 Pz 0‘
Moreover. equation (7) holds in each medium‘ k = 1, 2:

Eiuk ' e e .B e ank _ e azuk 6 azuk ib azuk
at - Kw. .1)uk+(a(r. ,2)“ (r. .2» 32 “W. 15931 H 0.9.1) 312 +2 as;

2 ‘ 'ak= % (n2(r.9.g)-1) mi (21)

z 30) b 2 am 2 2 32m 1 am

“("9'1’ ' 'm ar We") ' Rh? [as] a) 392 +0) as J
at: 2 3m 2 22 _m 2

Kr'elz)=:+-a;£ 8(r,8,z)=b [m+l2—m2 86))

Ar. A9, A2 denoting the steps in vange, azimuth and depth we use the following notation:

u (nAr. IAB, 1A1):

9 medium 1 , -
zVI in ............ -- _._ Interface 2-). = 0

medium 2
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azuk az’uk
We use Taylor—formulae to evaluate the second derivativesE and k = 1. 2, on (0).

Setting the results in (21)aooording to k=1 or 2 we get, with (19):
. n , n _ n

_un_ n ’Yr n n ler n n ml»
Gr )u-Ka1 H)”; MGM (UHJ;1 - u M H) - (—LAZ)2 (um,1 - u”) - AZ as )u

ib i n _ I n all n

'(nArVGBZJIJ ' (“Hm/ill; [31 J” (22)

 

and
, n ,n

u n 215|' n m au n_ . n Wl' n _ n n __
[3r Ju"(az“)u+ 2A6” (”l+1,j+1 "I-un) '(Az)2(ul.i+1 ' "l9 + A; as u-

“) a n _ ‘ n E2 n

'(nAr)2[362)u ' [M'B‘AZJIJ [82 Ju (23)
We are now ready to use the transmission oondition(20) to obtain :

_u n _ n n n n n n

Grjlf C "U" d("Hi-1' “Mi-1 )" 9 ("mm ‘ "I-1,j+1 )" “NJ-1
au n azu n

.+ gun-n + s (£Ju + fig)” (24)

the coefficients depending on b, p1 , p2 ; discrete values 0131, 32 ,cu; steps Al, A6. Az.

 

5. EQUATION ON A THERMIC FRONT

The fol|0wing equations have been established in [1] in two simple cases.

541 Thennic front at 9 = e",

e '99
medium 2 : medium]

H— manic frontal 9-6.”,
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We assume that. around 8 = 6",, 3:: = 0 (horizontal in 6)

ATaonrdevelopmentin 9 around 8.": andlhe interiaca eondilions lead to:
2un un Eamaun 1*32 2i!)_ = ib 2 _ _ _ _ ._ n_

all m Gill (in 9r azju + f 2 (am)2 (M2)" '4
—ib

l

+(nAr)2(A6)2 ("'3‘ + u '3“) (25)

 

5.2 Thenniclronl at r: rTF

 

r manic frontal tar.“=
—> adj I “lij\ “113 2

m urn medium

"'-I"-"i"""{'-1—--"i'--‘
(n-I)Ar (xi-mm- nA'r (n+l/2'.)Ar (n+l)Ar

a
We assume that, around r: in. 8—? = 0 (horizontal in r)

We obtain
n+1I2 11-1/2

m1]2__ mlz n A! a” ,3“ -u — u +2u + 4 [ er a! (25)

    

n-1I2 n+l/2

where (a. J and [an ] are solutions oi:
3r at

5243 .33. Lafizufl’ 3.9 fl Eaaflfl
ar’ "*Rm[m[ae) 392 as )3: Fmaeaeaz

2 32 322 1—32 .J! 9—0
+ib(m+302[89]2]322+r2882 (27’

in which lhe coefficient a is reialive lo medum 1 (resp. medium 2) and all the terms are Wrilten at range
1 1

n-i (resp.n+§).

Proc.l.0.A. Vol 15 Pan sum: as:   



   

Proceedings of the Institute of Acoustics

A3-D OCEAN-ACOUSTIC PARABOLIC PROPAGATION MODEL IN A VARIABLE ENVIRONMENT

6. NUMERICAL SOLUTION OF THE PROBLEM

6.1 Apart from the interlaces
We disoretize equation (7) by the alternating direction method : to progress at one step in

azu
range. two hall steps are needed. In the first hall step. implicit treatment 01 the terms in u and g is

2a u
achieved, the others being treated explicitly. In the second hall-step, the second derivative fl is the

only implicit term.

6.2 Initial and boundary conditions
Discretization oi (9) is straight lorward. Discretization ol (10) leads to a relation ol the term:

anal/f = (Wm, um? ulcm . upm. u'l‘N ) where N is such that NAz=1

6.3 Matricial system

Therelore, knowing the tield (LE) at range nAr, one can deduce the sound lield at range (n + 1) Ar

alter solving two linear systems :

Au"*"2=iau" + F A=2|-A

out“1 = Au"*"2+ G B=2|~B .
where F and G are two vectors depending only on previously calculated values oi the sound fieldand
A and B are two block diagonal matrices. each block being itsell a tridiagonal matrix or almost one.
With indexes in azimuth and depth running from 1 to M and 1 to N, each of those two big matricial
systems can be solved using M or N tn'diagonal or almost tridiagonal smaller linear systems.
These last systems can be solved in parallel.

NH 0 Mr” ..

A. x a- S
o R 0

Munch ' Nhlodrs

55‘ Proc.l.O.A.Vot15 Part 3 (1983)

 



 

Proceedings of the institute of Acoustics

A3-D OCEAN-ACOUSTIC PARABOLIC PROPAGATION MODEL IN A VAFtlABLE ENVIRONMENT

6.4 Sedimental layers or thennic fronts
For each range step, solving the problem at sedimentat layers or thermis fronts in a only implies a
modification of the coeiiicients lor the row is) of the matrix A corresponding to the indexes l and j
related to the azimuth and the depth of the intenacer For a theirnio iron! in the r-direction the method
consists in calculating a new starting lield u""“2 in medium 2 from equation (26). In (26)
Burnt/2 aunt/2

[resp

  

Br Br

6.6 Numerical results
The code is vectorised on a CONVEX computer. The results obtained for flat ocean bottoms in the
presence of thermic lronts are encouraging [2]. At the present time sloping ocean bottoms are being
implemented.

] is calcuiated from equation (27) r
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7. OONCLUSFON

We are deveiopping a three-dimensional propagation loss model forthe case ol sloping ocean bottoms.
assuming no cylindrical symetry of the geometry ol the bottom. The numerical analysis at the lull problem
has been periorrned. Some special cases are giving encouraging results. implementation of the general
problem is under development.
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