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1. INTRCDUCTION

In the ocean the variations of sound velocity, due 1o temperalure, salinity and pressure, are usually weak,
though essential for sound propagation. But, in the presence of eddies or currents, sudden changes with
range and azimuth of the velocity can occure at certain depths. Horizontal variations of the sound speed
cannot be neglected any longer, leading 1o the use of three-dimensional models.

In underwater acaustics, the acoustic pressure p is usually taken as the solution of a wave equation in
cylindrical coordinates (1, Z, 8) where r stands for the (horizontal) range, Z for the (vertical) depth and 8 for
the azimuth {in an horizontal plane}. The boundary condition at the Iree surface, i.e. in Z= 0, is a release
condition on the pressure : p = 0. At the botiom Z = H, the situation is much more complicated. The simple

o
case of a perectly reflective bottom leads to a Neumann boundary c:onc.iitionswl:1 = 0 (normal derivative).

But usually several sedimental layers have to be taken inlo account, and the bottom is not flat. At infinity
an oulgoing radiation condition is usually assumed. It is incorporated, by introducing the acoustic field v as
the envelop of the pressure p by the formula ;

p(r,8,2) = K ey (1. 8.2) (1)

where Hg ) denotes the Hanke! function of order 0 of the first kind.

The parabolic approximation has been popularized in the underwaler acoustics community by F.D.
Tappert under the fom:
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in the simplesi case (finear approximation). The backscatiered waves are not faken into account into the
modet. In (2) a reference constant sound speed ¢, being fixed, the reference wave number k; and the

refraction index n{r, 8, Z} are defined by :
2
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where { stands for the source frequency, B being the attenuation coefficient in water or sediments and

i= V1.
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More sophisticated models can be built, allowing larger aperures of the source. An example is the
quadratic modal of B. Grandvuillemin developed at CE.LA.D.S.M. :
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For the sake of simplicity, we will restrict ourselves to the linear model (2). .

2. BOTTOM MODELISATION AND THERMIC FRONTS

The environment is defined by a range r running from 0 fo R, an azimuth € running from 0 1o 2 ¢, and
a variable depth Z running from 0 lo H=Z_. _ (r, 8). The bottom is made of homothetic sedimental

layers, each of them having its own density p and attenuation B. The transmission conditions at an
inlerface between medium 1 and medium 2 for the acouslic pressure are known 1o be :

P, =P, — e 5)

in the case of non horizontal interfaces, condition (5) will lead to unusual transmission conditions on the
acoustic field v, involving v and a transverse derivative of v.
Now, in order o release the standard cylindrical-symetry hypothesis, and allow the treatment of sloping

ocean bottoms, we use an atline mapping which sends the variable interval J0, Z__. (r, 8)[ onto the
reference interval )0, 1, that is :

1

z=Zw(,8), of,8)= Z_ 0 {6)
Setting ur,8,2) = v(r,8,4) = v[r 0, ﬁ)
we can write equation (2} intenms of u and z ; we oblain :
du ia(r, ,2) u + zdo ib(dw _£+@£32m ib 1 dwyau
or @ r"’[ @ 2o "Paaw|a
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et © = (v, Vg, v7) be the normal unitary vector at the botiom ; the boundary conditions are easily
derivedinr=0 and on the surface z=0:

u(0, 8, z} = u, (8, z) ufr,8,0) =0 9)
At the bottomn, 2 = 1, we obtain from (5) :

E+—;:}—ﬂ:'@+iku1.1+lau zdN +m@n—0 {10)
[ar o or oz °J [ae maea)e d 7

Periodicity in © is moreover assumed.

Let us now consider Q sedimental layers, We shall denote by Z = Zsed? (r, 8) the equation of the
interface between layers (g - 1) and q, layer 0 being the water layer, and make the following
homotheticity hypothesis :

3Q constants A%, q=1..Q, 0<h <A <. kg1

such that Zsed? {r, 8) =A% Z . (6 (11)
Under hypothesis (11) our changa of variable (6) will transform the Q interfaces Z = Zsed? (r, 8} into
horizontal planes z=29,9=1...Q, parallel 10 the bottom z=1.
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To take themic fronts in range and azimuth into account, the environment is split up into different zones.
In each zone the sound speed is a function of Z only and is assumed to be conlinuous in each layer.
Each layer of a zone has its own attenuation.
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On each interface (themmic front in range or azimuth, inlerface belween layers) we have to- desive
fransmission condilions in the new variables (1, 0, 2).
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3. INTERFACE CONDITIONS

As usual, the equations conceming the different interfaces are oblained using the fransmission condtions
(5), the parabolic equation (7) written in each of the two media, as well as Taylor developments for
u{r, 8, 2) in the vicinity of the interface. We thus need to derive from (5) the appropriate transmission
conditions on u.

A nomal direction U = 0 along a smooth surface (o) with equatlon

{o}: T6.2)= 0 : (12}
o - 1 3C 18 T A
is given by v = ( ( 8,2 ‘rae (] Z).az(r,B,Z))
- . , . = d 19
so thal the normal derivalive of p interms of u given by (10) writes, selling V, = (a T %
N = z —> 5 oL " 4
&_:VHQ'VH”"'(_ §+ _J$+Ik°B_u (13)
We check that, in the case of a flat interface, when {{r,8,2)=Z-C (C constant)
= L 1 . -~ du N ov
V = - = - =
nt T and 2o implie 3 [ R %" 5z
In the general case, the transmission equations (5) across the interface {a) are straightforward from {13):
u{n8 2)=u.8,2) o (o) (14)
du, o, : ‘
z o L o |
p: [V Q(V u, + V 0 — % ]+m2 32 oz + iky aru.l]-
ou ar 3
A e B IR T i ST S
Pz[ Hg( VHm 5 ]+m % 32 +iky ar ”2] on (g) {15)

Tangential derivation of {14) combined with (15) leads in the case where % # 0 to the two relations:

B, = Bu, on(o) (16)
i[ﬁ';; ﬁu,+|gradc12—-+.k & ]
Pq ar
 Pe e S F

£.Du, + Igradgl -—-+|k ==u on (o) (mn
Ps 0 ar

— (= 4 _df = 5—>a;—>a
wherengracl_(vH,az)7 and D -3 vH+( Vho 5 V“C]az
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In the case of a fkat imterface L(r, ©, Z) = Z - C {C constant ), g—f gﬂ— . F,:; = T)’. Igrad {1 = 1
190 g an

and we recover exactly by (17) the usual condition: — — = — o
1 92 p2 az

4. PARABOLIC EQUATION SATISFED BY THE FIELD U ON THE INTERFACE
BETWEEN TWO SEDIMENTAL LAYERS
Under hypothesis (11}, the equation of the interface can be chosen as
[r0,2) = 0ne)Z-L=2-A=0 {18)
A
and thus 2_5 =1 V= ~V V., . Thisimplies : T = ¥y, and (14), (16), (17) read
u, {,8,3) =u, (r6,1) VH U (L824 = H u, (r.8,3) {19)
au ou 2 1

_]__1_l_2=.(l_2 IV_'l)_lml2+m2] 14 [‘ﬁ,’_lmv u)onz:i\. (20)

Py oz ppdz (o P1 Py

Moreover, equation (7) holds in each medium, k=1, 2:

v, o o I oy, o azu 560, azuk bazuk

Pl ia(r, 0,2) u +(afr, 8 2) +iB(r, 8, 2)} % +r, 8,2 0z +i8(r,8,7) —— 2 +?aez

kg z i :
3=73 0260, )-0  beg (21)
am b z (dw)2 z e 1 o
ae.d =5 B("B'z"ﬁ('uf[ae) Yw oot Twae ]

2 dw e 2
T(f-9.2)=?+"z‘£ 8(r.8,2) =b (m"’+l2—m2 £J )

Ar, A8, Az denoting the steps in range, azimuth and depth we use the following notation:
u (nAr, A8, jAZ) = “E,

AZemmmmmm e e on ——. interface z-A = 0
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Pu, Py,
azandaea k=12, on{a).

Setting the results in (21)acoording fo k=1 or 2 we gel, with (19):

uye 0 n 28 o 11
Gf]u"(a”)u 2AGA2(UHJ1 S ey AL IR ae)a

We use Taylor-formulae to evaluate the second derivatives

b 2y \n 2§ n
" fnan’? GBZ )'J ] [‘“ s )u [az ]lJ @
and
Wr n n 2I'Slﬂ' n n "Yln ou \n
(5 5o sa0mm Gt 914 g o - 90 + 25 (56 )
ib é n . @ n % fn
Ik [362 )ia i (“”B‘A’-)u (az I.J' )

We are now ready 1o use the transmission condition(20} to obtain ;
u
n n 1] n
GTJ =C “u* d ("'I 1917 Y1 )* e (ul+‘|,i+1 "YU )* fujiy

uyn 9%y \n
+ gulm+ S[BBJ l[g)hi (29

the coefficients depending on b, Py. Py discrete values of a,, a, , @; steps Ar, A, Az.

5. EQUATION ON A THERMIC FRONT
The following equations have been established in [1] in two simple cases.

5.1 Thermic frontat 6= O

] 1?9
z , medium 2 ! medium [
! Leg— thermic front &t 8a by
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Woe assume that, around 6 = BTF, — =0 (horizontal in 8)

A Taylor developmentin 8 around BTF and the interface condifions lead to :

Az do du\n  AitdH b Y
@r]u (azz)u (m or azju fz (nAr)z(AeF]"”

U ,'J!+1) (25)

(nAr)2 (a8) ( L

5.2 Thermic front at r= ryp

r thermic front at f=r
- g LETh
mediumn J \ / - medium 2

- g
{n-D)&r (n-1/2)ar nar (n+12)ar  (n+l)ar

We assume that, around 1= fyg, 2—? =0 (horizortal in r)
Woe obtain

aun+1.'2 aun-m
12 _ 12
umie= .y +2u+4[ar Py ) (26)
n1i2 n+1l2 )
whera [ ) ( Jara solutions of :
or
j_:_ z (o 32(9 da \du 2szmB2
a rz[ ( ) %2’ J 2 © 20 069z
2, 2 (dop\d E@
+b (‘” * Po? |30 ]812 T @)

in which the coefficient a is relative to medium 1 (resp. medium 2) and all the terms are written at range

1 1
n-3 (resp.n+2).
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6. NUMERICAL SOLUTION OF THE PROBLEM

6.1 Apart from the interfaces
We discretize equation (7) by the alternating direction method : to progress of one step in

u
range, two half steps are needed. In the first half step, implicit treatment of the tarms in u and Q is

9%y
achieved, the others being treated explicitly. in the second half-step, the second derivative ﬁ is the

only implicit term.

6.2 Initial and boundary conditions
Discrelization of (9) is straight forward. Discretization of (10) leads to a refation of the form:

Wiz = f(u{';f’z. Ul up s Ul U0y ) where N is suchthat NAZz=1

6.3 Matricial system

Therefors, knowing the field (L{fj) al range nAr, oné can deduce the sound field at range (n + 1} Ar
afler solving two linear syslems :

AuU™Z.By 4 F A=21-A

™ =A™724 G B=21-B ,

where F and G are two vectors depending only on previously calculated values of the sound fiekdand
A and B are two block diagonal matrices, each block being itsell a tridiagonal matrix or almost one.
With indexes in azimuth and depth running from 110 M and 1 to N, each of those two big matricial
systems can be solved using M or N tridiagonal or almost tridiagonal smaller lingar systems,

These last systems can be solved in parallel.

M blocks ' N blocks
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6.4 Sedimental layers or thermic fronts
For each range step, solving the problem of sedimental layers or themic fronts in @ only implies a

modification of the coefficients for the row (s) of the matrix A corresponding to the indexes | and |
related to the azimuth and the depth of the interface. For a thermic front in the r-direction the method
consists in calculating a new starting field u™ 2 in medium 2 from equation (26). In (26)

aun+1a’2 n-1/2
(resp‘ ) is calculated from equation (27) .

or or
6.6 Numerical results
The code is vectorised on a CONVEX computer. The results obtained for flat ocean bottoms in the

presence of thermic fronts are encouraging [2]. At the present time sloping ocean bottoms are being
implemented.
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7. CONCLUSION

We are developping a three-dimensional propagation loss model for the case of sloping ocean botioms,
assuming no cylindrical symetry of the geometry of the bottom. The numerical analysis of the full problem
has been performed. Some special cases are giving encouraging results. Implementation of the general
problem is under development.
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