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1. INTRODUCTION

The parabolic equation (PE) method [1,2] is an efficient approach for solving range—dependent

ocean acoustics problems [3] that is based on the limit of an outgoing wave propagating nearly

horizontally in a nearly homogeneous medium. This paper describes recent improvements in the

accuracy, capability, and efficiency of the PE method. Sections 2-7 summarize previously

published results and provide references that contain examples. Sections 8-11 describe

unpublished results and contain examples. The higher-order PE (Section 2) is accurate for

problems involving nearly vertical propagation and large variations in the properties of the medium

[4.5]. With energy-conservation corrections (Section 3), the PE method is accurate for range-

dependent problems [6-8]. The two-way PE (Section 4) may be used to solve some back-scattering

problems [9,10]. The elastic PE (Section 5) handles problems involving interaction with an elastic

ocean bottom [11-14]. The split-step Padé solution (Section 6) is orders of magnitude faster than

standard numerical techniques for solving the higher-order PE and the elastic PE [15.16]. The self-

starter (Section 7) is an accurate and efficient technique for generating initial conditions [17]. The

pom-elastic PE (Section 8) handles problems involving interaction with a pore-elastic ocean

bottom [18]. The adiabatic mode PE (Section 9) is an efficient approach for solving three—

dimensional problems [19,20]. The windy PE (Section 10) is a generalization of the adiabatic

mode PE for problems involving fluid flow that has been applied to model sound propagation from

the impact sites of the fragments of Comet Shoemaker-Levy 9 [21]. The PE method has been

extended to handle problems involving waveguides of variable thickness (Section 11) and used to

solve beach acoustics problems [22].

2. THE HIGHER-ORDER PE

We work in cylindrical coordinates, where z is the depth below the ocean surface, the range r is

the horizontal distance from a time-harmonic point source at z = :0. and 9 is the azimuth. We

remove the spreading factor r‘”2 and the time dependent factor exp(—ia)r) from the complex

pressure p, where t is time and m is the circular frequency of the source. The environment is

approximated by a set ofregions in which the acoustic parameters, the wave number k and the

density p, depend only on 2. In Section 3, we describe an accurate approach for treating the

vertical interfaces between regions. The farfield wave equation.
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is valid in each of the stratified regions.

The second term in (2.1) may be neglected for many problems in ocean acoustics [23]. Since it is

rarely practical to perform three-dimensional calculations. the uncoupled azimuth approximation is

one of the most important approximations in ocean acoustics. Although the uncoupled azimuth

solution is obtained by solving the two-dimensional wave equation,

32P 3 13F 2_ ___ = , v 2.2
3r2+paz[paz)+kp 0 - ( )

this solution is three dimensional if k and p depend on 0. We describe an efficient approach for

handling azimuthal coupling in Section 9.

Rearranging (2.2), we obtain

32p
-a—ri—+k3(l+X)p=0,

_ -2 ill 2_ 2X—k0[pazpaz+k kg], (2.4)

where [to is a representative wave number. Factoring the operator in (2.3) into incoming and

outgoing operators, we obtain

We remove the factor exp(ik0r) from p and assume that incoming energy is dominated by

outgoing energy to obtain the outgoing wave equation,

%=ik°(—l+‘/1+X)p. (2.6)

An approach for treating incoming energy is described in Section 4. The outgoing wave equation is

solved by approximating the square-root function for small X . The linear approximation that was

used in the original ocean acoustics PE [3] is restricted to problems involving nearly horizontal

propagation and small variations in the acoustic parameters. A rational-linear approximation [24]

was later implemented to achieve improved accuracy [25 .26]. An arbitrary level of accuracy may

be achieved by using an n-term rational approximation to obtain the higher-order PE,

% = iko z;=laj.,(1 + bj'nX)-1Xp . (2.7)
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The coefficients aj." and bj_,. are selected so that the PE is accurate and stable. The coefficients

given by analytic expressions in [4] provide accuracy in a wide region about X = 0. The

coefficients tabulated in [14], which provide accuracy and annihilate the evanescent spectrum. are

useful for problems involving energy-conservation corrections (Section 3) and required for

problems involving elastic layers (Section 5). The higher-order PE is solved using standard

numerical techniques [5].

3. ENERGY-CONSERVATION CORRECTIONS

' The quantities p and p'1 ap/ar are conserved across the vertical interfaces between range-

independent regions. Since the outgoing wave equation involves only one range derivative. it is not

possible for the PE solution to satisfy both of these conditions. For weak range dependence, it is

often possible to achieve accurate results by conserving p and ignoring the other condition. This

approach was used in PE algorithms until it became evident that amplitude errors of several

decibels can arise for problems involving sloping ocean bottoms [6,27]. A high level of accuracy

may be achieved for range-dependent problems by conserving energy flux across the vertical

interfaces. Although this approach involves only one condition, it was not successfully

implemented until two difficulties were resolved.

One of the difficulties is the fact that conserving the energy flux,

in 3pE = ——dz ,{par ( )

is a nonlinear condition (note that E is conserved if both p and p_18p/ar are conserved). This

difficulty was resolved for coupled-mode solutions by replacing conservation of E with

conservation of p‘mp [6]. This linear condition is a good approximation of conservation of E if

the horizontal wave-number spectrum is narrow and aplar a ikop.

The other difficulty is that severe Gibbs oscillations arise when energy-conservation corrections are

implemented into PE solutions (the coupled-mode solution is immune to this problem). This

difficulty was resolved by using a rational approximation (Section 2) that annihilates the evanescent

spectrum [7]. The results in [7] indicate that conserving (pc)"/2 p rather than p'mp provides

greater accuracy. Benchmark tests indicate that this partial correction provides accurate solutions

for most range-dependent problems in ocean acoustics.

The complete energy-conservation correction [8] is based on conserving the quantity,

A = p'l’2(1 + X)"4 p ,. (3.2)
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across vertical interfaces. The fourth root of the operator in (3.2) is approximated using rational

functions. By expressing p in terms of normal modes and using the properties of the normal

modes, we obtain

E = J’ Azdz. (3.3)

Benchmark tests involving sediment sound speeds as high as 5000 ml 5 indicate that the complete

energy-conservation correction is accurate for the most extreme range-dependent problems for

which outgoing energy dominates back-scattered energy. For the acoustic case, the complete

correction is of limited practical importance because the partial correction is robust. A complete

correction for the elastic case would be very useful, however. because the partial correction is not

robust for the elastic case [8].

4. THE TWO—WAY PB

The PE method can be used to solve back-scattering problems [9,10]. The single-scattering

approximation [28] is applied at the vertical interfaces between regions. The PE method is used to

eliminate range derivatives from one of the interface conditions to obtain a boundary-value problem

for the scattered field. A related approach has been used to solve other scattering problems [29.30].

The following conditions hold at a vertical interface between regions A and 8:

pi +pr = pl’ (4‘1)

1__ pi + p, = __ (4.2)
p ( ) p

where the subscripts A and B denote evaluation in the respective regions and the subscripts i. r.

and t denote the incident, reflected. and transmitted fields. From (2.6) and (4.2), we obtain

1 1
—Nr(p: - pr) = —Nup,. (43)
PA Pa

where N = V 1+)! . The minus sign in (4.3) accounts for the fact that p, is incoming. Using (4.1)

to eliminate p, from (4.3), we obtain

1 1 l l
—N +—N p =[—-N -—N )p-. (4.4)

[pr‘pn”]’pr‘pa”‘

The direct numerical solution of (4.4) involves the solution of a non-banded system of equations.

Rearranging (4.4), we obtain the iteration formula,
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= _ IPA pI-pi

p, [1 NEPANA)( 2 . ( )

The numerical solution associated with (4.5) involves the solution of banded systems of equations

and converges rapidly if the change in the acoustic parameters across the interface is small. An

improved iteration formula is given in [9]. The two-way PE has been generalized to handle some

problems involving elastic layers [10].

'5. THE ELASTIC PE

It is sometimes necessary to model the ocean bottom as an elastic medium. In this section. we

derive the elastic PE for the uncoupled azimuth problem. For simplicity, we work in Cartesian

coordinates, where x is the horizontal distance from a line source and y is the other horizontal

coordinate. The point source case is easily obtained by modifying the source condition (Section 7)

and including cylindrical spreading. It is necessary to use a non-standard formulation of elasticity

so that the equations of motion may be factored [11]. It is necessary to use special coefficients for

the rational approximation to obtain a stable solution [13].

We derive the equations of motion for a stratified medium using the approach of [31]. which

involves applying Newton's law F = ma to a small volume element. The x and 2 components of

F = ma are '

30,, + 30,, azu
6:: a: “Tat—2‘

(5.1)

a a 32

%+%=p?¥'
(5.2)

where u = (u,v,w) is the displacement vector and on, a", and a" are the stresses. The

constitutive equations (Hooke‘s law) are

Bu
0,, — M+2#E,

au aw
= — — , 5.an 4333;) (4)

8won = mung. (5.5)

wherel andy aretheLaméconstantsandA=V~u.
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Substituting the constitutive equations into (5.1) and (5.2), we obtain tlte equations of motion,

azu aiu 3A fig 3u3w_
— —— 2 — ——— , 5.6
"axzwazfipwufihmafiazaz+azax ( ’

32w 82w 2 am at agaw
— — — —A 2——= . .uaxz +11 322 +pa) w+(l+p)az+ 32 + a1 az 0 (57)

The equations of motion are valid for problems involving piece-wise continuous depth variations in

the elastic parameters and may be applied to problems involving fluid layers by implementing the

interface conditions described in [11,14]. Differentiating (5.6) with respect to x and (5.7) with

respect to z and summing, we obtain

92A 3 3A 2
(1+2u)?+z[(}l +211) az]+pw A+

2
3119—” “0219.8 “91%) +3[ 85L
753:3 azw+2$azaz " 9“" (5'8)82?

Combining (5.7) and (5.8), we obtain

K .92 A + A _ 0 (5 9)

3x2 w w_ 0 ’ '

where the matrices K and L contain depth operators.

The formulation of elasticity given by (5.6) and (5.7) does not factor due to the presence of terms

involving a single x derivative. The approach of Section 2 may be generalized to solve (5.9),

which is a vector wave equation that is in the same form as the scalar wave equation (2.3).

Factoring (5.9) and retaining the outgoing factor, we obtain the outgoing elastic wave equation,

a A _, _1 1/2 A
5b)-.“ L) (5.10)

Rearranging (5.10), we obtain

1 A _. 1/2 Aax[w]-tko(I+X) (5.11)

X = 1152(K"L-k31). (5.12)
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The operator square root in (5.11) is approximated using a rational function (Section 2) to obtain

tlte elastic PE. The numerical solution of the elastic PE. which is similar to the numerical solution

of the acoustic PE, is described in [14].

6. THE SPLIT-STEP PADE SOLUTION

The finite-difference solution of (2.7) is orders of magnitude faster than the finite-difference

solution of (2.2). It is possible to achieve even greater efficiency with the split-step Padé solution

[15], which is based on formally integrating (2.6) to obtain

p(r+Ar) = exp[ikoAr(—1+ 1+x)]p(r), (6.1)

where Ar is an arbitrary range step. Substituting a rational approximation for the exponential of the-

square root. we obtain

p(r+Ar) = [1+2;=1%'§—]p(r). , (6.2)

where the coefficients a” and fijln depend on Ar.

The split-step Padé solution allows large values of Ar because the rational approximation provides

higher-order accuracy in both X and Ar. Another advantage of the split-step Padé solution is that

the terms on the right side of (6.2) may be evaluated in parallel on a multi-processor computer. The

finite-difference solution of (2.7) usually requires Ar to be less than a wavelength. For the split-

step Pade solution, the only limitation on the size of Ar is the rate of range dependence. The split-

step Padé solution typically provides an additional gain in efficiency of about two orders of

magnitude. The split-step Padé solution has been generalized to allow dense sampling of the

solution in range [16].

When the PE method was first applied to ocean acoustics [3], the split-step Fourier algorithm [32]

was used to obtain numerical solutions. Although the applications of this approach are limited

(e. g.. it is not applicable to the higher-order PE or the elastic PE), it has remained in wide use due

to an efficiency advantage over the finite—difference solution. The improved efficiency that the split-

step Padé solution achieves (without sacrificing accuracy or capability) might be sufficient to

overcome this advantage, especially for the shallow water problems that are currently of interest.

7. THE SELF-STARTER

To obtain a solution with the PE method, it is necessary to specify an initial condition

corresponding to a source. An exact initial condition may be obtained by applying separation of
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variables to solve (2.2). High-frequency approximations have been applied to develop more

efficient starting fields [3,26,33]. The self-starter is an approach for obtaining an initial condition

that provides both accuracy and efficiency and is based on the PE method (hence the name). In a

mathematical sense, the self-starter is one of four applications of the PE method, which is

applicable to approximating the wave equation in the interior of the domain [1-3]. generating

radiation boundary conditions [34,35], solving scattering problems [9,29], and generating initial

conditions.

We derive the self-starter for the case of a line source in an ocean overlying an elastic bottom.

Placing a source function on the right side of (5.9). we obtain -

Kgp}4A) = (—2i6(1)5(2 — 20)), m)

w w 0

where 20 is in the water column. Integrating (7.1) over an arbitrarily small interval about 1: = 0,

we obtain

. _¢?_ A _ —i5(z—zo)nan-t . -
Using (5.10) to replace the x derivative in (7.2), we obtain

lim K(K‘1L)m(:) = [5“; 2‘0] . (7.3)

It is not possible to evaluate (7.3) numerically because the solution is singular at z = 20.

We evaluate the field away from the origin to avoid the singularity. Applying the formal solution

used in the derivation of the split-step Padé solution (Section 6), we obtain

(A) = exp[ix(K“L)l/2](K'1L)-UZK‘1[6(Z; 20)] . (7.4)
W

Using the fact that an operator commutes with the exponential of itself, we rearrange (7.4) as

(3] = (It-1L)"2 exp[ix(K_1L)m]L"[6(z ‘ 2”] . (7.5)
0  

No numerical difficulties are encountered when (7.5) is evaluated at x = x0. where 10 is on the

order of a few wavelengths.

The first step in constructing the self-starter involves solving
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L(:‘4)=(“‘z;‘°’)-
The bounded solution of this problem is then propagated out a short distance in range to x = x0

using the elastic PE (Section 5) to obtain

(3:) = exp[ixo(K‘lL)1/2][::) . (7.7)

Finally, we apply a rational function to approximate the operator square root and obtain

[3): (Ir—1L)”26:]. (7.8)

In contrast to the starting fields that are based on high-frequency approximations, the self-starter

depends on the depth-dependent properties of the medium and satisfies all interface and boundary

conditions. The self-starter requires the solution of only a small number of boundary-value

problems. To generate an initial condition in terms of the horizontal wave-number spectrum or

normal modes, it is necessary to solve hundreds or thousands of similar boundary-value problems.

The self-starter is applicable to problems involving fluid, elastic, and pom-elastic (Section 8)

layers. With a minor modification that is described in [17], the self-starter may be applied to

problems involving point sources. The self-starter is also applicable to problems involving

compressional and shear sources in elastic [10] and poro-elastic [18] layers.

8. THE FORD-ELASTIC PE

In some cases, it is appropriate to treat ocean sediments as pom-elastic media [37-42], which

support fast and slow compressional waves and shear waves. The density of the porous solid is

denoted by p,. The density of the fluid that occupies the pore spaces in denoted by pf. The

porosity a is the fraction of the medium (by volume) that consists of pore spaces. The other

parameters that are required to describe a pom-elastic medium are the three wave speeds and

attenuations and an added mass parameter that accounts for the geometry of the pore spaces [38-

42]. It is necessary to numerically invert a nonlinear mapping to obtain the coefficients of the poro-

elastic wave equation from these parameters [18].

As in Section 5, we obtain the equations of motion by applying F = ma to a small volume element

for the case of a line source. The 2: component of F = ma for the combination of the solid and

fluid components is

aa 30' 32 32“

w“*a—f=("“)PssT"+“Pf7” ‘8'”
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where u = (u,v,w) is the displacement of the porous solid and uf = (uf.vf.wf) is the

displacement of the flui¢ The 1 component of F = ma for the fluid component is

2 2 i
30 auf+TPf¢9U+nBU (82) I ‘

 

where -a is the fluid pressure and U = (U,V,W) = a(uf — u). The terms involving the

parameters 1:, n, and K account for the geometry of the pore spaces and Darcy's law for flow in

porous media [37-43].

The constitutive equations (Hooke‘s law) [37-42] are

on = M+2n$+c§fl (8.3)

a, =M+2pg+cg (8.4)

a awan =#(Eu+3x-). (3-5)

q=CA+M;. (8.6) . t

where A = V-u, C: V’U, and 2., u, C, and M are properties of the pom-elastic medium.

These equations are generalizations of the constitutive equations for elastic media. For the time-

harmonic problem, we substitute the constitutive equations into (8.1), (8.2), and similar equations

for the 2 components of Newton's law to obtain the equations of motion.

pa—Zu+u32u+pwzu+(l+u)iA-+§£-a£ a—“éw-w
3x2 Ei- 9x a: az 323x

cé§+pfwzu=m

32w 32w 3A at an 3w
—+p?+pw2w+(}. +fl)-a-z-+§z-A+ZEE+

a
a—(CC)+p,w2W = 0,

3A «36 2 2 _CE+ME+pfw u+pcw U-—0 , (8.9)

 

(8.7)
   

        
     

   
          

 
   

  
   

a a
E(CA)+E(M§)+pfw2w+pcw2W = 0 ,
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Figure 1. The pore-elastic PE
solution for a 25-Hz problem
involving a beamed array of
compressional sources in a half space
(Section 8). A fast wave radiates
from the array and reflects from the
boundary (top). Slow waves radiate
from the array and the boundary
(middle). A shear wave radiates from

the boundary (bottom).

Figure 2. The adiabatic mode PE
solution for a 1-H: source placed at
the location of the source used in the
Heard Island Feasibility Test
(Section 9). The shadow of Heard

Island is broadened by azimuthal
coupling. Acoustic energy reaches
both coasts of North America. The
computation covers the entire earth.
including the continents.
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where p = (1 — 00p, + apf and p: = 0:40 + 1:)pf +1‘w‘ltc'1n. We have used slightly different
notation than is used in the existing articles on pom-elasticity so that it is easy to see that (8.7) and

(8.8) are generalizations of (5.6) and (5.7). The equations of motion are valid for problems

involving piece-wise continuous depth variations in the pom-elastic parameters. These equations

may be applied to problems involving fluid and elastic layers by applying the interface conditions

described in [18].

Differentiating (8.7) with respect to x and (8.8) with respect to z and summing. we obtain

32A 3 an

ayzw 222 ifiafl] 3g ]
8231 +0) azw+262 6'2 (92 +82 32A +

32; 32 3p,
wazc+CET+Eficn+m2Ew =0. (5.11)

This equation is a generalization of (5.8). Differentiating (8.9) with respect to x and (8.10) with

respect to z and summing. we obtain

32.: 62 a2
C?+?(CA)+pj-COZA + Mai-f

32 3p 3
j97(M§)+PcmzC+w2—a?fvv+mzr§z‘—W=O.

(8.12)

Using (8.10) to eliminate W from (8.8). (8.11), and (8.12), we obtain the system of equations,

2 A A 0
a

K? w +" W = 0 1 (8.13)
C C o

where the matrices K and L are generalized from the elastic case. This equation factors and may

therefore be solved with the approach that is used to solve (5.9). For two-dimensional problems,

the standard formulation of pom-elasticity involves four coupled equations. Since (8.13) involves

only three equations, the standard formulation contains a redundant equation.

We illustrate the pom-elastic PE for a problem involving an array of 25-Hz sources in an idealized

half space in which there is no attenuation. the fast wave speed is 2400 m I s, the slow wave speed

is 1000 ml 5. and the shear wave speed is 1200 ml 5. The source array is phased so that the fast

wave is incident on the boundary at 55 degrees from normal incidence. The source spacing is

20 m, with the top source 1 km from the boundary. The fast, slow, and shear potentials appear in
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Figure 1. A fast wave radiates from the array and reflects from the boundary. A slow wave radiates

from the array at a shallower angle due to its lower speed. Slow and shear waves radiate from the

boundary due to coupling of energy when the fast wave is reflected.

9. THE ADIABATIC MODE PE

Like the PE method, the adiabatic mode solution [44,45] is efficient for range-dependent problems.

This solution is based on the assumption that energy does not couple between modes in a gradwa

range-dependent medium (the PE method accounts for mode coupling). The normal-mode

representation of the solution of (2.1) is

'p = 2 pj(r.9)¢,-(z;r,9). _ (9.1)

a - "
19-58%} k245- = k}(r.9)¢,-, . (9.2)

where the W and kj are the normal modes and eigenvalues and the p1- are to be determined. The

semicolon in the argument of it] indicates gradual variation with r and 9.

Substituting (9.1) into (2.1) and neglecting mode coupling, we obtain

62p ' 1 32? ' z

Factoring (9.3) and assuming that back-scattered energy may be neglected, we obtain the outgoing

wave equation,

ap- . 1 a2 "2
Trait—2?”)? p,,_ (9.4)

which may be solved using the approach described in Section 2. The factorization of (9.3) is not
exact because the operator in the square root depends on r. The factorization is an accurate
approximation, however, because the azimuthal ten-n varies slowly with r in the farfield. By

reducing a three-dimensional problem to a small number of two—dimensional problems, it becomes

practical to solve large-scale problems. A simple correction that accounts for the curvature of the
waveguide is incorporated into (9.4) for global-scale problems [19].

We illustrate the adiabatic mode PE for a problem involving a l-Hz source at 745° E and
53.4" S, which is the location of the source used in the Heard Island Feasibility Test [46]. The

energy in the first mode is displayed in Figure 2. Since the horizontal phase speed is higher in
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shallow water, energy is deflected away from shallow water by horizontal refraction. This effect

causes Heard Island to cast a broad shadow to the north-northwest of the source.

10. THE WINDY PE

The adiabatic mode PE has been extended to account for the effects of fluid flow and applied to

model acoustic propagation from the impact sites of the fragments of Comet Shoemaker-Levy 9

[21]. We define the sound speed c, the wind velocity u = (u,.u9.u,), and the acoustic velocity

v = (v,.v9,v,). We neglect the vertical component of the wind, which is assumed to be dominated

by the horizontal components. As in [47], we assume that variations in the properties of the

medium are gradual temporally with respect to a representative acoustic period and spatially with

respect to a representative acoustic wavelength. We also assume that horizontal variations are more

gradual than vertical variations. Under these assumptions, the formulation of [47] reduces to

D,v+-:;Vp=0, (10.1)

32p 132p 13p 1 2 amav Zpaueav
—— —— ——-D 2 ———' ————£=0, .

¥+r2 992 +p p32 c2 'p+ p 3: 3r + r a: 39 (102)

where

D,=%+u-V. (10.3)

For the time-hatmonic problem, we assume that 5 << 1, where s = lc’lul is the Mach number, and

obtain

v = —va+0(e), (10.4)
cop

D, = —im+u~V , (10.5)

D} = —w2 —2twu-V +0022), (10.6)

and (10.2) reduces to

82p 2iku, 3p 1 82p 2iku9 3p
—+——+——+ —+
t9rz c 9r r2 692 re 36

a 19p 2 2:314, (92p 21 Bus 32p 2
_ __ k —__.— ———— = , 10.7

932(p a)“ p w a: M: rw 92 age: 0(a) ( )

   

134 Proc.‘|.O.A. Vol 16 Pa‘rt’6 (1994)

  



 

Proceedings of the Institute of Acoustics

PARABOLIC EQUATION TECHNIQUES

 Proc. I.O.A. Vol 16 Part 6 (1994)
135

Figure 3. The windy PE solution of a
Jovian acoustics problem involving a
2-mHz source at the location of the
impact site of Comet Shoemaker-
Levy 9 (Section 10). An intense

beam of energy radiates from the
impact site toward the west. This
beam is formed by refraction due to
wind shear in the cloud belts. This
effect also gives rise to several
weaker beams.

Figure 4. PE solution for a problem
involving a 25-1-11 source located
12.5 km from the beach in a ZOO-m
deep region of the water column
(Section 11). The ocean bottom

consists of a sediment that is 100 m
thick and runs parallel to the upper
boundary. A basement half space lies
below the sediment layer.
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The following generalization of (9.3) is correct to 0(5) when energy coupling between modes is

negligible [2]]:

. 32 . - .
2 +2iWr 3P, l P! +21w9fi

_+——.

3r r2 892 r 30

  

+ = 0 ,

where wr and we are the r and 9 components of
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Since |wr|2 << |w,|, (10.8) is asymptotically equivalent to
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We use the assumption of gradual horizontal variations to factor (10.10) and obtain the outgoing

wave equation,

in
- 1 32 Ziw a_-'_ - -__ 9_. 2 .——tw,.,pj+t[r2 392+ r ae+k1] p1. (10.11)

 

A simple correction that accounts for the curvature of the waveguide is incorporated into (10.11)

for global-scale problems [19]. A related equation has been obtained for two-dimensional problems

[48].

We apply the windy PE to model the propagation of a 2-mHz mode corresponding to a horizontal

phase speed of 900 m I s from the impact sites of the fragments of Comet Shoemaker-Levy 9 [49—

52]. Predictions for the prospects of detecting the impacts ranged from bleak [53] to favorable

[54,55]. Fortunately, the optimistic predictions turned out to be correct [56-59]. Although several

types of wave propagation from the impact sites were modeled [60-65], little attention was given to

the problem of acoustic propagation in the sound channel, which is a layer of low sound speed that

is analogous to the sound channel in the ocean [66]. We decided to model this problem because the

comet was expected to (and apparently did) explode within the sound channel [54,551.

The depth dependence of the sound Speed [67] and the latitudinal dependence of the zonal winds

[68] are known from Voyager data. The geographic dependence of the sound speed is not known

but is not expected to be a major factor. The zonal winds blow in different directions at different

latitudes with Speeds of over 160 m l 5 near the equator and peak speeds of about 40 m l 5 near the

impact latitude of 44" S. The cells that lie between wind reversals correspond roughly to the

Jovian cloud belts. Acoustic energy gets refracted by wind shear in these belts, which are acoustic

waveguides. As the reSuIts in Figure 3 indicate, some of these waveguides pinch the energy
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radiating from the impact site into intense beams that remain coherent for long distances. We have

confirmed this behavior with ray solutions. Since the beams are formed by geometric effects, they

occur for all modes and all frequencies in a wide band. The beams should therefore be the most

prominent acoustic features away from the impact sites. Since acoustic waves were detected near

the impact sites in raw data, there is a chance that the beams will be detected in processed data.

11. TAPERING WAVEGUIDES

The PE method can be used to solve problems involving waveguides of varying thickness, with

applications to beach acoustics [22]. When the location of the upper boundary of the waveguide

varies with range, the PE method may be implemented using the approach that was used for the

rotated PE [69]. As in Section 2, the environment is approximated by a sequence of stratified

regions, and the upper boundary becomes a sequence of stair steps. The pressure—release boundary

condition p = 0 is applied along the runs ofthe steps. The depth operator in (2.7) is approximated

using finite differences, and the vertical interfaces between regions are handled by adding and

subtracting grid points as the location of the upper boundary varies.

We apply this approach to a problem involving propagation from the ocean onto the beach. A 25-

Hz source is placed in a ZOO-m deep water column 12.5 km from the beach. The ocean bottom

consists of a 100-m thick sediment layer overlying a basement half space. The sound speed is

1500 m / s in the water, 1704.5 m / s in the sediment, and 1850 m / s in the basement. The density

is 1.15 g/ cm3 in the sediment and 1.5 g / cm3 in the basement. The attenuation (in decibels per

wavelength) is 0.1 in the sediment and 0.25 in the basement. The results in Figure 4 indicate that

three modes are excited in the water column and that a significant amount of energy couples into

the sediment layer and propagates several kilometers inland. Beyond the beach, the transmission

loss levels in the sediment range from about 60 to 90 dB. v

12. SUMMARY

The PE method has recently undergone improvements in accuracy (Sections 2.3.7). capability

(Sections 4,5,73,10,11). and efficiency (Sections 6,7,9). The higher-order energy-conserving PE

is accurate when the uncoupled azimuth approximation is valid and the sediment may be modeled

as a fluid. Complete energy-conservation corrections need to be developed for the elastic PE and

the pore-elastic PE, which are accurate when the environment varies gradually with range. The

self-starter is an accurate and efficient technique for generating initial conditions. The split-step

Fade solution is orders of magnitude faster than other algorithms for solving the higher-order PE

and the elastic PE. The adiabatic mode PE is an efficient approach for investigating three-

dimensional effects. The windy PE is a generalization of the adiabatic mode PE that is useful for

solving problems in Jovian acoustics. The PE method has also been generalized to handle

problems involving waveguides of variable thickness.
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