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1. INTRODUCTION

The detection of tones (that is, sinusoids or, in the complex signal case, cisoids) is an important

function in passive sonar. There may be many tones present, and the detector is required both

to detect the tones and provide initial estimates of their frequencies, so that they can be further

analysed. The background noise is typically coloured and non-Gaussian. Since detection prob-
ability rises rapidly with the Signal—to—Noise ratio (SNR), it is most important in practice for

the detector to be locally optimal, that is, optimal at low SNR. The other important aim is to

minimise computational load, since the detector may be applied to a large number of channels
in parallel.

This paper considers the detection of tones in a single block of sampled data. Detection algorithms
of this kind can easily be applied to sequential contiguous or overlapping blocks, for detection

over longer time spans. We summarise the results for known optimal detectors and present new

fast frequency-domain algorithms which acheive near-optimal detection of one or more tones in

noise; the noise may be coloured, and, for the blocklengths typical in sonar, non-Gaussian. We
also describe the incorporation of recently published fast frequency estimation algorithms for the
detection and estimation of tonals.

2. OPTIMUM DETECTION

The input to the detector is assumed to be a block of N consecutive samples of the discrete-time

signal 2... i.e. {:n; n = 0,1,...,N — 1}. The 1,, are in general complex, although the real-signal
case will be considered later. The signal to be detected is modelled as the sum of p cisoids

3» = Elseprme (1)
i=0

where —r < w,- 5 1r (radians per sample). b = {b1,...b,,} is a set of 1: complex amplitudes,
and w = {w1,...,w,} a set of p frequencies. In much of the literature on tone detection the
amplitude and phase notation (14.39,) is used, where A; = |b,-] and 0.- : arg(b.-); however this
makes the problem non-linear in 0,- as well as Log, and the use of the complex amplitudes b.- is
advantageous in both analysis and implementation. (1) is an example of a linear signal model,
which is comprehensively considered in most texts on detection theory.
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We require the detector to choose one of the hypotheses

H1: (z,.=s,.+z,.) or Ho: (z.,=z,.) (2)

in which 2= (21,...2N} is zero mean noise. We will assume initially that the the complex

amplitudes and frequencies of the tones are unknown, but that the model order p is known, and

that z is complex. white and Gaussian, with known covariance matrix R = 021”.

If it is assumed that uniform prior probability distributions are assigned to the parameters to and

b (implying that any value is as likely as any other), and if it is required that the detector not
only detects the tone(s) but estimates the corresponding frequencies, it can be shown [2] that
the optimum detector is the generalised likelihood ratio (LR) detector, which uses the Maximum
Likelihood (ML) joint estimates of the unknown parameters to and b.

2.1 Single Tone Detection For a single complex tone (1; = 1). the signal model becomes
3,. = bexp(jwn). It is normal to define the “power” of a discrete-time signal as the expectation
of its squared modulus, so for the single complex tone the power of the cisoid signal is A2 = |b12
and the power of the added noise z,I is a’, giving a signal-to-noise ratio (SNR) of le/a’. The
ML estimate of w [3] is the value 0 which maximises

' " N-r
C(w) _= §|X(w)lz, where X(w) = z 2,. exp(—jwn). (3)

":0

X(or) in (3) is known as the Discrete Time Fourier Transform (DTFT) of the signal x, and
(l/N)lX(u)|2 is known as the Schuster periodogmm of x. The generalised likelihood ratio detector
therefore chooses R; if the maximum of the periodogram exceeds a threshold T}.

2.2 Optimality of the Generalised LR Detector Whalen [2] derives the corresponding
generalised LR detector for the continuous real-signal case, and also derives the locally optimum
detectors under other assumptions (a locally optimum detector is one which is optimum at low
SNR, which is, in practice, the important requirement for a detector). He assumes that the phase
remains unknown, and shows that regardless of the prior probability distribution of the amplitude
A the locally optimum detector always has the same form as the generalised LR detector. We
can also sh0w that if the prior probability distribution p(w) of the frequency is non-uniform, the
optimum detector simply maximises p(u)C(w) rather than C(w) in (3). Hence a detector of this
form is optimum or near-optimum under a wide range of assumptions.

2.3 Multiple tone detection In the multiple tone case, the generalised likelihood ratio is a

non-linear function ofthe p frequencies, with many local optima, and maximising it, to obtain

the ML estimate of the frequencies, is in general difficult and computationally expensive. The
problem can, however, be simplified under some important circumstances. Rife and Boorstyn
[5] show that the determination of the ML estimate of any of the frequencies, say a)", can be

carried out as if it were the only tonepresent, provided that the separation in frequency between

it and any other tone, lut — w.-|, is > 21r/N; in such cases, we will describe the frequencies as

“widely separated”. If all the frequencies, taken in pairs, are widely separated, the non-linear
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optimisation in p frequencies is replaced by p non-linear optimisations in 1 frequency, for w; to

u, in turn, which is a great simplification.

In Walker [7] an asymptotically optimal algorithm is presented for the multiple tone case when the
' frequencies are sufficiently separated. This algorithm is misleadingly described in [1] as “finding
the p largest local maxima of the periodogram"; in fact, the procedure is: first, find the maximum
of the periodogram (at frequency 9);), then subtract from the data the corresponding tone, using
the ML estimates of w; and in; find the maximum of the modified periodogram (at wg), subtract
the corresponding tone, etc. The important difference is that when a large tone is close to a
smaller one, the larger may “mask” the smaller unless the correct procedure is used.

2.4 Model order determination for widely separated frequencies In practice, it is likely
that the number of tones, 1.1, will not be known. Under the assumption of wide frequency sep-
aration, the log likelihood of hypothesis H1 for any g'ven valueof p is a constant plus the sum
of the 11 largest local maxima of the periodogram, calculated as explained above. Therefore, the
likelihood for different candidate values of p can easily be calculated, and this could be used as a
basis for selecting p. This would be an appropriate approach to use when the prior probability of
a g'ven set of tones is not the same as the product of the individual prior probabilities for each
tone, for example when the signal to be detected is expected to have harmonic structure [6].

However, if we assume that the tones are produced by physically independent sources, we may
reasonably assume that a hypothesis test can be applied to eadi possible tone independently.
Starting with thelargest local maximum of the periodogram, we can therefore apply a single-
tone generalised likelihood ratio test to this maximum, to decide on the presence of a tone at
this frequency. If we decide that there is a tone present, we subtract the ML estimate of this
tone from the data and repeat the procedure, until the (p + 1)th largest peak is lower than the
threshold.

2.5 Results for real tones In the case of a single real tone (sinusoid) the signal model becomes

5,, = %(bap(jwn) + b' exp(—jwn)) (4)

where the angular frequency w is now in the range 0 < w 5 1r, and the noise a is real white
Gaussian noise with variance 0’. The amplitude of the sinusoid in (4) is |b| and its power is
|b|2/2, g'ving a signal-to—noise ratio (SNR) of Ibl2/(2a’).

Since for a real signal X(to) = X'(—w), detection of the complex tone with positive frequency is
equivalent to detection of the tone with negative frequency, and nothing is gained by doing both.
From section 2.3 we see that complex single tone detection can be applied to detect the peak near
frequency is provided that w and —w are “widely separated”, that is w — (—w) = 2a) > 21r/N,and
also (since it is a sampled-data system) (27r — w) — w > 21r/N. This gives the known result [3]
that the optimal real single tone detector is the same as for the complex-signal case, apart from
a scale factor, provided that n/N < w < «(N — 1)/N. '
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3. EXISTING SINGLE TONE DETECTORS

The optimum detector requires a one-dimensional search over (4 to find the maximum of the

periodogram (3). This search is a non-linear optimisation problem, and there are many local

optima; it is normal therefore to start by searching for the maximum over a uniform discrete grid

of values of «I. An obvious approach is to calculate the Discrete Fourier Spectrum (DFS) X of

the signal 3: via the Discrete Fourier Transform (DFT)

N-l 2n,

XI. = 2 2,. up(—jnkw); k = 0,1,...N — 1. (5)
71:!)

Comparing (5) with (3), we see that X(hug) = X,“ where mo = 21r/N. We therefore define the

discrete pen'odogmm as (1/N)|X(kwo)|2 = (1/N)|X,.|2, and the search for the maximum of the
periodogram can be approximated by a search for the maximum of the discrete periodogram.

The DFT can, of course, be calculated efficiently over the entire frequency range using an FFT.

However in both ML frequency estimation [3] and tone detection, the frequency grid spacing

we = 2r/N obtained by the use of the discrete periodogram is too large, and results in a loss of

1 performance. The reason for this can be seen by considering the DTFT X(m) of a single cisoid,

2,. = Aexp(jwsn):

"‘1 N — 1
X(w) = z Aexpuusn)exp(—jun) = NAexp(—j1rfi N )snic(1rfi) (6)

n=0

 

where fi = (w — us)/wo is the frequency offset from us measured in units of the DPS sample

spacing, and snic(z) E sin(::)/(Nsin(:l:/N)). Putting w =luau in (6) gives the value .of DFS
sample Xk. If the signal frequency w; equals Mug with M integer, then XM = NA and X. = 0

for k 76 M; this is the “on-bin” case. However, for other frequencies (“ofi-bin” ), the amplitude of

the largest sample of the DFS falls. In the worst case, which is when u =(M + 0.5%, it is easy
to show that the maximum value of the DFS is reduced to approximately 2NA/1r = 0.64NA;

this is the “picket-fence effect”. As a result the maximum of the discrete periodogram is reduced

from the true value NA2 in the “on-bin" case to approximately 0.4NA2, and it is this which

causes the loss in detection probability.

3.1 Zero Padding The standard way to reduce the loss in detection probability is to use zem-

padding The N—sample input x is zero-padded to the aN-sample vector x2 by appending

(a — 1)N zeros:
(:37,...zf,_1,zf,,...,xZN_l) = (so, ..., 1N-1,0,..., 0) (7)

If the aN-point DFT of x2 is X2. then X(w) = XE for w =2n'lc/(aN) = lung/a, giving a
frequency resolution or times finer than the discrete periodogram. Detection can then be based

on searching for the maximum of the zero-padded periodogram, (1/N)|Xf|2.

8.2 Windowing One solution to the picket fence and leakage effects in spectrum analysis is to use

windowing. For the simple atample of the Banning window, windowing can be implemented either
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by multiplication in the time—domain or convolution in the frequency domain; in the frequency

domain, the flaming-windowed DFS xw is given by

x! = a(2X,. — X1,“ — Xh—l): (8)
where a is a scale factor. In the simulations reported below, the scale factor a in (8) is set to
a = l/Jé, so that the variance of X! equals the variance of K], (using thefact that the Xp, are
independent).

4. PERFORMANCE OF EXISTING SINGLE TONE DETECTORS

Since it can be shown [4] that the samples of the DFT of zercrmean Gaussian input noise of
variance 02 are independent zero-mean Gaussian variables of variance N472, an exact theoretical

analysis of the performance of the discrete periodogram detector is possible, using the central

and non-central x’ distributions. Although theoretical analysis of the zero-padded detector’s
performance for a > 1 is intractable, its performance as afunction of a can easily be determined

' by simulation.

The first parameter of interest is the false alarm rate as a function of detector threshold. For

the standard discrete periodogram, let the probability that any given sample of the discrete

periodogram exceeds a threshold T2 be pp. Assuming unit variance input noise, it can be shown
that in theory ln(pp) = —T’. If we were only considering ngle tone detection, we might wish

to use theprobability of a false alarm per block, given by p5 = l — (1 — pp)L, where L is the
number of DFS samples corresponding to the chosen detector bandwidth 21rL/N rads/sample

(in general, L < N). However, when considering multiple tone detection it is more useful to
consider the probability of false alarm per bandwidth (.00, which we denote p0; hence for the
discrete periodogram pa = pp.

Simulations were carried out with3000 datablocks of N = 1024 points each, to measure false
alarm rates over a bandwidth of 211000/1024 in each block, i.e. with L = 1000. The input

noise variance was 1.0, and the test thresholds were set to give false alarm probabilities per
bandwidth we covering the range 3 x 10'3 to 3 x 10—5. For the zero-padded DFS the samples
become increasingly correlated as (1 increases, and adjacent samples of the Banning windowed

DFS are also correlated. Therefore in measuring false alarm rates any contiguous block of samples
exceeding the threshold was counted as a single false alarm. It was found that to a high degree

of accuracy the relationship ln(po) = —T2 + p holds, with p as follows:

mmmzr,a=w
mummy-mm
Using thresholds derived from this table, a. Receiver Operating Curve (ROC) can be determined,

which is a plot of detection probability pp against SNR for a given false alarm rate. In Figure 1

the R005 are plotted for a false alarm rate of pp = 10“ (this corresponds to a block false alarm
rate of 9.5%) for zero-padded DFS detectors with a = 1,2,4 and for the Banning-windowed
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DFS (with a = l/Jé). Because of the finite frequency grid sparing, the detection probability
depends on signal frequency :45; it is maximum when my = K21r/(aN ), and minimum when us =
(K+0.5)21r/(aN ). Figure 1 therefore shows the average detection probability, uniformly weighted
over all frequencies, and Figure 2 shows the maximum and minimum detection probabilities.

It can be seen that the ROC using a = 2 is almost as good as using a = 4, and that either gives a
significant improvement on the standard discrete periodogram. It can also be seen that although
windowing is successful in reducing the variation of detection probability with frequency, it results
in a significant loss of detection probability at all frequencies.

5. FAST FREQUENCY-DOMAIN APPROXIMATIONS

For a single cisoid signal the number of samples of its DPS (6) for which the spectral “energy”
|Xh|2 is significant is very small. This makes it possible to design efficient approximate algorithms
for the calculation of the periodogram on a. frequency grid denser than the standard DFS. A
second advantage of working in the frequency domain is that because each sample of the DFS is
the weighted sum_ ofN input samples, the distribution of the DPS samples X), will be very close

hto Gaussian, regardless of the input distribution, by the Central Limit Theorem provided that
N is sufficiently large, as it is in sonar. Detector performance will therefore be insensitive to the
input noise distribution.

Using standard properties of the DFT, we can show that

N—l l N-l

2: m; = N 2 Xms; (9)
n=0 m=0

where S is the DFT of s. Applying this to the zero-padded DPT, we have

Xz-NZ-l: ex (—‘nk2—")—1EX H' (10)k—”=anaN—Nm=mm

where H... is the DFT of exp(j21rnk/(aN)). (The limit of summation in (10) is N — 1 because
the zero-padded data is zero for n > N — 1.) Hm is then given by (6), with u5 = 21rk/(aN),
and hence I} = m '- (k/a). Clearly for k = oK, we have X2 = Xx, the standard DFS. For the
other values, k at 0111’, the magnitude of H, snic(fi), decays rapidly away from the frequency of
interest, ‘05. Therefore we can approximate the value of L? in (10) by summing only over those
values of m for which E... is relatively large.

The minimum useful approximation is to approximate H", by only its two largest samples. Ap-
plying this to the case a = 2 and k = 2K + 1, (and approximating snic(z) by sin(:r)/z and
using N > 1 in (6) ) the two largest values ofH; will be H} = (2N/1r)exp(—j1r/2) and
Hf“, = (2N/1r) exp(j1r/2). We then have X]? z (2j/1r)(XK+1 — Xx). We therefore approxi-
mate the a = 2 zero-padded DPS XE by using Xz = XK for the “on-bin” samples (I: = 2K)
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and the approximation X5 2: j7(XK+1 — XK) for the intermediate samples (I: = 2K + 1). If
we put '1 = 2/1r. then both the false alarm probability and detection probability will be lower

for the intermediate samples than for the DFS samples. We therefore (henristically) choose

1 = l/fi; because the DPS samples are independent, this makes the false alarm probability for

the intermediate approximate samples the same as for the DFS samples.

For this approximate detector the log threshold offset is found to be p = 0.62 and its ROC is

shown in Figures 1 and 2. It is clearly better than the DFS and much better than the windowed
DFS. The computational cost (in real arithmetic operations) of this detector for N = L = 1024

is 58368 ops, compared with 51200 for the DFS and 132096 for the a = 2 zero-padded DFS; the

advantage increases further as L reduces.

Also shown in Figures 1 and 2 are (i) a detector approximating a = 2 using 4 terms of the

summation (10), and (ii) a detector approximating a = 3 using 2 terms for every intermediate
point. The corresponding threshold ofl'sets are p = 0.60 and 0.86 and the computational costs

are 62464 and 65536 ops. We can see that the 4-term approximation offers a slight improvement;

-7 the a = 3, 2-term, approximation is not worthwhile, however.

6. OVERAIiL SYSTEM IMPLEMENTATION FOR MULTIPLE TONE
DETECTION

As explained in section 2.3, a multiple tone detection system for widely separated frequencies
can be implemented by repeatedly identifying the periodogram maximum and subtracting the

corresponding tone from the data. Either a zero-padded DFS or the fast approximation to it
described in section 4 may be used for the peak detection function. When the noise is unknown,

and typically coloured as in sonar, standard approaches may be used to estimate the variance of

the DFS (the “noise floor”) as a function of w.

Tonal parameter estimation for widely separated tonals may be carried out using a recently

published fast, near optimal, frequency-domain algorithm [8], and computational effort may be

further saved by performing the subtraction of the estimated tonal in the DFS domain. This
DFS may be calculated easily using (6), and should then only be subtracted over the range of
frequencies for which the magnitude of the tonal spectrum is significant in comparison to the

estimated DFS noise variance. For low SNR tonals, this will be a small number of DFS samples.

The detection of tonals which are close in frequency has not been considered in detail in this paper.
Preliminary investigations suggest that in passive sonar there is little advantage in using more
complex algorithms for detection; the conditions under which detection probability is usefully
improved are rare.
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