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DYNAMIC ANALYSIS OF SHALLOW SHELLS WITH A DOUBLY CURVED
TRIANGULAR FINITE ELEMENT

by Mervyn D. Olson, U, of British Columbia, Vancouver
and Garry M. Lindberg, Nat. Res. Coun. of Canada, Ottawa

A dynamic analysis capabllity for shallow shell
structures based on an arbitrarily curved trlangular shell
finite element is develcped. The shallew shell approxil-
matien 15 used for two reascons. Firstly there are enough
practical problems which satisfy the shallow shell assump-
tion to warrant thelr treatment as a separate class, and
secondly, this approxlmation greatly reduces the complexity
‘of the theory and programming required. This work 1s the
first application to dynamlcs of a new curved finite ele-
ment, which proved to be superior to all earlier elements
in static applications (Ref.l). The present developments
include an extension to shells of variable thickness.

The formulation of this shell finite element is
briefly as follows. The shallow shell theory of Novozhilov
1s used, and the shell surface 1s deflned by a quadratiec
function of the base plane Cartesilan coordinates. The
displacement function for the nermal geflectlon, w, of the
shell is ftaken as a quintilc pelynomial (21 terms) 1n the
¢ocordinates in the base plane. Three constraints are
placed on the polynomial to ensure that the normal deriva-
tive varies cublecally along each edge. The tangential
displacements u and v for the shell are each expressed as
cublec polynomials (10 terms each), and the generalized co-
ordinates are taken to be u and v and their first deriva-
tives at each element vertex, plus u and v at the centrecid,.
The shell thickness is assumed to vary linearly over the
triangular area of the element, although thls thieckness
variation may be extended to higher order with little ef-
fort due to the closed form nature of the matrix component
solutions. The stiffness and consistent mass matrices for
the element are then obtained frb@ calculations of strailn
and kinetic energies, respectively. A major advance 1s
achieved in that the matrix components are obtained in
closed form relative to the pelynomial ceoefficients and
are then easlly transformed tc generalized ccordilnate
netation in lecal or global coordinates by slimple matrix
multiplication. -

Most practical shrll vibrations inveolve predominantly
normal motion, and hen:e it 1is customary to neglect tan-
gential inertia. Thi: assumptlon allows the tangential
displacements u and v at the element's centrold to be
condensed out of the final elemental stiffness matrix by
minimizing the strain energy with respect to them. Hence,



the final element has 36 degrees of freedom and 1s com-
pletely conforming. The element contalns an exact repre-
sentation of all six required rigld body modes and has an
asymptotic strain energy convergence rate of N-° where N
Is the number of elements per side of a shell. The same
asymptotlc convergence rate should alsc hold for vibra-
tion eigenvalue predlctions. Finally, once the master
matrices are assembled for a particular finite element
representation of a shell structure, the assumption of
neglecting tangentlial Inertla further allows all tangen-
tial degrees of freedom to be condensed out, thus greatly
reducing the elgenvalue problem slzes.

The foregoing method was used to analyze the vlbra-
tions for several shallow shell applications. The first
application was to a shallow spherical cap "freely sup-
ported" on a square base. This problem is a convenlent
test case because 1t has an exact solution, thus allowing
the eigenvalue convergence to be studied in detail. Using
symmetry, cne quarter of the shell was analyzed with
finite element grids of one, two and three elements along
an edge. Eigenvalue accuracles of the order of 0.01 per
cent and convergence approaching a rate of N-5 were
obtalned from these calculations. This convergence wasg
somewhat less than the predicted asymptotle rate of N-§.
However, the above mentloned accuracles are quite surfi--
elent for most applications.

The next two applicaticns were to experimental fan
blade models. These models were constructed by rolling
sheet steel into a cylindrical shape and then welding one
curved edge to a massive steel block. The first model
was of uniform thickness, while the second had a thickness
varying linearly in the curved direction. The vibrations
of these models were predicted with finite element grids
of two, three and four elements per edge and these predie
tions were verified experimentally. Excellent accuracy
and rapid convergence were cbtalned in both cases for up
to twenty-five modes. Good compariscn of predicted and
measured mode shapes was also obtained.

The next application was to an experimental medel of
a spherical dish antemna. The circular model was spun
formed to a spherical radius and then firmly clamped at
its centre. Several finite element predictions of the
vibrations were cbtained by analysing one quadrant of the
dish, and the results were verified experimentally. Some
small discrepancies between theory and experiment were
noted at the lower frequencles and seemed to be assoclated
with inaccuracles in the shell model curvatures.

The final application considered was to a elamped
cyilindrical shell panel for which experimental results
were svailable elsewhere (Ref.2). Symmetry condltlions were
again invcked on one guarter of the shell, and elgenvalue
predictions were obtained with several finite element
grids. A comparison of the natural freguencies for this
shell as predicted by varicus workers using different
methods 1s given in Table 1 along with the experimental
results {reproduced from Reference 2}. Here ERR stands
for an extended Rayleigh-Ritz method (Ref.3); FET is the
present trlangular finite element using a 3 %3 grid, FER
is from a 4 x6 grid of rectangular finlte elements (Ref. 4)




and K 1s a Kantorovich method (Ref.5)}. The sizes of the
eigenvalue problems solved, whileh provide a measure of
the computing efforts required, are given In the heading
of Table 1 for the different symmetry cases, sym.-sym.;
sym.-antlsym. and antisym.-antisym. A comparlson of these
numbers indicates that the present methed 1s the most
effiecient. The ERR method shows up second best, but 1t
has the dilstinct disadvantage that each new problem must
be reprogrammed, whereas the present finite element method
may be used for arbitrary shallow shells with quite
general beundary shapes and edge conditions.

Finally, it may be noted that the complete detalls
of this work are available in Reference 6.
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Table 1 - COMPARISON OF VARIOUS PREDICTICN METHODS
FOR CLAMPED CYLINDRICAL PANEL

Experil- Theoretical
Mode m,n# mental ERR FET FRR K
(Bz.) 55,55,55 49,482,377 T7,77,77
1 1,2 814 870 870 8g0 8g0
2 1,3 940 958 958 973 966
3 1,3 1260 1288 1288 1311 1265
4 2,1 1306 136U 1363 1371 1375
5 2,2 1452 1440 1440 1454 1450
£ 2,3 18¢2 1753 1756 1775 1745
T L,k (%?,?g] 1795 1780 1816
B8 3,1 2100 2057 2086 2068
g 3,2 2225 2220 2222 2234
10 2,4 2280 2300 2285 2319
*m,n are the numbers of half waves in the straight and

curved directions, respectively.




