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There are many ways to make an unsatisfactory noise on a violin.
Some of these require extreme actions of one kind or another from
the player, but there are a few which even the best players slip
into from time to time when playing near the limits of the normal
performance regime. Indeed, these undesirable regimes determine
those limits. We explore this 'rogue's gallery" (of bowed-string
motions of direct interest to musicians) using simple theory
complemented by observations and numerical simulations of bowed
string motion. in an attempt to understand under what conditions
the usual regime for steady playing is accessible.

This usual regime is the Helmholtz motion [1.2.3]. in which at any
given instant the string lies in two more or less straight pieces
separated by a sharp corner ('the Helmholtz corner”). This corner
shuttles around the visible envelope of the string motion at the
wave speed of the' string, alternately triggering the onset or
slipping and sticking as it passes the bow. Thus there is one
period of sticking and one of slipping in each cycle.

A major reason for this study is that it might shed light on the
harder problem of how the precise conditions under 'which the
Helmholtz motion is possible vary among different violins. while
the layman commonly supposes that violins are chosen solely on the
basis or their sound qualities. the player may be at least as
concerned about differences in 'Eeel' which make one instrument
more 'docile' than another. Among the many things implied by such
use of words is surely a diit'erence between instruments in the
range of bowing parameters for which normal steady playing is
possible. in any case, the tolerance problem for steady playing
is the simplest problem for scientific study and forms a necessary
first' step in a more complete study.

We build upon the well—known work on this problem by Raman [i] and
Schelleng (5]. We take as our starting point the last-named's
diagrammatic representation of bowing tolerance. During steady
bowing the player controls three parameters: bow speed vb, normal

force tb and position of the bow on the string. which we describe

by the parameter p denoting the distance 01' the bowed point from
the bridge as a traction of total string length. Schelleng held
vb constant. and plotted a first approximation to the region oi!

the tb-fi plane in which the Helmholtz motion could exist.

Schelleng considered ’two other types of motion to which the
Helmholtz motion could give way. Hecalculated a minimum bow

llS 



Proceedings of The Institute of Acousiics

A PARAMETRIC STUDY OF THE BONED STRING

force based on transitiongto motion with two slip periods per
cycle (the 'double—slip' motion). and a maximum‘bow force where
the Helmholtz corner is no longer strong enough to initiate
slipping when it passes the bow. Above this maximum force, motion
may be aperiodic ('raucous' motion), or it may be more or less
periodic with a period substantially greater than the string's
natural period. .

A competent player will not' stray into, or even close to. the
raucous regime. His maximum usable bow force is usually determined
by the need to avoid one of two other undesirable ’deviations from
the Helmholtz motion with the natural string period. When 1! is
not too small (i.e. playing with the bow not too near the bridge).
the limit is determined by the string playing unacceptably flat,
as a result of an effect of frictional hysteresis discussed by us
previously [3.6].

when playing nearer the bridge. a different effect sets the limit
on how force. As a result of the finite width of the ribbon of
bow hair in contact with the string, some at the hairs start to
slip during the nominal sticking period of the Helmholtz motion.
These slips tend not to be accurately periodic, and give rise to a
component of audible noise accompanying the note being played.
Depending on the musical‘ context, this eventually reaches an
unacceptable level. so determining the maximum bow force [7,B].

A quite different member of our menagerie is encountered when
playing well away fromthe bridge (sul tasto), at a point on the
string close to a simple subdivision of the length. The midpoint
is the most extreme case, but is unusual in practice. The
one-third, one—quarter and one—fifth points are more commonly
encountered. and progressively less troublesome._ "What usually
happens near one of these points is the onset of a totally
different oscillation regime, described collectively by Lawergren
[9] as 'S—motion'. The S~motion regimes form an interesting and
important subset of the 'higher types' classified by Raman in his
monumental work on the bowed string. An audible characteristic of
s-motion is the very strong presence in the note of the Nth
harmonic, when playing close'to the p—l/N point. s-motion is
sometimes used for colouristic effects in sul tasto playing.

It should be noted that S~motion does not occur exactly a_t the l/N
points: at those points, a different set of higher types is
obtained which correspond simply to removing from the Helmholtz
motion every Nth Fourier component. These motions, known as
'Helmholtz's crumples'. were observed by Helmholtz himself. but
are not very important' in practice since they require extremely
accurate placement of the bow at the 1/“ point (and a light bow
force);

The final (and more roguish) character we need to include in the
gallery is another motion which is one of Raman's higher types,
which we have christened the "double flyback' motion. so far as
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we are aware. specific attention has not been drawn to this motion
in the past [6]. The motion contains two slip periods per cycle,
in close succession. This distinguishes it from what we have
called the double slip motion above, where the two slips are
roughly equallyspaced. It is an entirely different oscillation
regime from the double slip motion. In Raman's classification (by
the number of 'corners' propagating on the string). it is of the
third type rather than the second type. The reason for the name
will become clear below when an example of the motion will be
given.

Raman's catalogue of higher types contains many other possible
motions of a bowed string. a good number of which have been
observed [10]. However, from the point of view of the player, and
thus for' our present purpose. the list given above seems
substantially complete. Only under rather rare circumstances do
competent players who are trying to produce the Helmholtz motion
slip into‘any regime we have not mentioned. The only candidate
known to us for addition to the menagerie is the E-string 'whistle'
to which certain instruments are prone, but we have never had
aCCess to a sufficiently repeatable example to pin down whatmotion
is involved. We would be most interested to obtain access to an
instrument which suffers seriously from this problem. to fill this
gap in current knowledge. This empirical observation that our
menagerie is now substantially complete is the result both of
watching oscillograms of bridge force during much playing, and of
extensive experiments with the computer simulations which we have
described previously [3,7,11].

The various desirable and undesirable regimes of oscillation
described above are illustrated in Figure 1. These all show
waveforms of transverse force exerted by the string on the bridge,
observed by means of a piezoslectric transducer in the string
notch. They were all obtained on the same open violin G string.
bowed by hand with a conventional bow. and the time scale is the
same in each case. The bridge force waveform for the.Helmholtz
motion is approximately a sawtooth. Since this is a real string.
the rapid flyback (as the Helmholtz corner reflects from the
bridge) is rather rounded. This is shown as Fig. 1(a). The other
inmates of the menagerie appear in the other figures, with the
exception of flattening, which even when clearly audible is
virtually indistinguishable from the Helmholtz motion in such a
small picture. Figure 1(a) shows a 'double-flyback motion'. The
bridgevforce waveform exhibits a pair of closely—spaced flybacks.

schelleng's original study of tolerance considered the motions
shown in Figs. 1(b) and 1(f). We are suggesting that a more
refined version of his study should allow for the motions shown in
Figs. l(b)-(e) plus the flattening effect. Figure 1(f) is rarely
relevant in practice. This middle road between allowing for
Schelleng's two motions and Raman's vast collection seems not to
have been pursued before. It provides a framework for a more
complete study of the practical limits on bowing parameters for
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Figure 1. Steady oscillation regimes of a bowed violin 6 string”.

(a) Helmholtz motion. (b) Double-slip motion. (c) Spikes. (d)

S-motion for 3-1/4. (e) Double-flyback motion. (f) Slightly

raucous motion.
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steady playing. Such a study is still under way. and some general
findings only are reported here.

Figure 2 shows roughly wheremost of the oscillation regimes
discussed above fall in Schelleng's diagram. The two slanting
lines represent Schelleng's maximum and minimum bow forces for the

Helmholtz motion. These vary like a l and B 2 respectively, giving
rise to the two different slopes in the log-log graph. The regions
of spikes and flattening fall inside Schelleng's region. and
vertical stripes surrounding the points B-l/N for low values of N
indicate where S-motion is encountered. Schelleng's lines are
defined by transition to double-slip motion and raucous motion
respectively. so these appear outside his tolerance region.

Double—flyback motion is not indicated at all on Fig. 2. and to
explain why we need to examine another aspect of the behaviour of
the different oscillation regimes as a function of bow force.
Suppose we fix a at some typical. moderately small. value. Figure
3 then indicates the relationship between Helmholtz motion.
double—slip motion and double—flyback motion. The first vertical
bar indicates the Schelleng tolerance range for the Helmholtz
motion at this 3. Alongside is the corresponding range for the
double-slip motion. If we start with a Helmholtz motion and slowly
reduce the bow force, a transition to double-slip motion occurs at
Schelleng's minimum force as indicated by the arrow labelled
'decreasing F '. However. if we now increase the force again we

do not immediately revert to Helmholtz motion. The bars overlap,
and we have a hysteresis of regimes. The transition back to
Helmholtz motion occurs at a far higher force, indicated by the
arrow labelled 'increasing Fb'.

The right—hand bar in Fig. 3 shows the tolerance range for the
double-flyback motion. It is virtually identical to the Helmholtz
range. This means that there is never a forced transition from
Helmholtz to double—flyhack or vice versa in the way we have just
discussed for the double—slip motion. This is the reason that the
double—flyback motion was not indicated in Fig. 2: its tolerance
region is almost exactly coextensive with the Helmholtz region.

This behaviour of the double-flyback motion has both its good and
its bad aspects. from the point of View of the player. Once a
Helmholtz motion is established. gradual changes to bow force will
not cause an unwanted transition to double—flyback motion. However,
if the note is started with the wrong kind of transient so that
double-flyback motion is established. then no small adjustment can
change it to a Helmholtz motion. A new transient is required.
Since the sound of the double-flyback motion is rather unpleasant,
it is fortunate that most simple transients give rise to the
Helmholtz motion rather than the double—flyback motion.

In summary. we have identified a small subset of the large
collection of possible steady motions of a bowed string which
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Figure 2. Schelleng's tolerance diagram showing the approximate
positions of some of the regimes discussed.
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Figure 3. Force tolerance ranges for three Oscillation régimes at

fixed 3. illustrating regsme hysteresis.
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seems to include most regimes of interest to the player. We have
indicated where these occur in parameter space, using Schelleng‘s
well-known diagram or the Pb-n plane. We have alsodrawn attention

to the importance of hysteretic behaviour or the different
oscillation regimes. A more detailed analysis of these effects
should give a good basis of understanding 0! the parameter ranges
in which a musically-acceptable Helmholtz motion can be sustained.
It can also yield other incidental results at some interest. such
as a more realistic criterion (or the occurrence of wolf notes,
based on an assumption of slowly-varying alternation between
Helmholtz and double—slip motions.
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