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When a string player presses sufficiently hard with his bow, the musical note
gives way either to the familiar raucous 'beginner's noise'! or, if the bow arm is
steady enough, te more or less stable oscilllations at pitches much lower than the
fundamental string pitch. The reason why scme such catastrophic breakdown must occur
was made clear by Schelleng in his penetrating paper on the bowed string[1]. As
Schelleng realised, maximum bow force in practice 1a generally less than the force
causing breakdown, and it is signalled by one of several leas drastic phenaomena.

Of these phenomena, two are particularly important. The first is a very slight
deviation of piteh - almost always on the 'flat' side of the string tuning - as bow
force increases. This flattening is easily demcnstrated- with the bow a moderate
distance from the bridge at a low bow speed[2]. When flattening is audible, pitch
iz sensitive to bow force so that control of intonation becomes difficult. Players
avoid this regime, The second phenomenon is the gradual buildup of noise accompanying
the musical note, which 1s noticeable when trying te play more and more Loudly near
the bridge. This noisy regime is frequently used to deliberate musical effect, but
the noise can reach an wnacceptable level, depending on context. This imposes the
other major limitation on bow force in practice.

The physical causes of neither phenomenon have been elucidated as far as we know,
although mention of flattening in the scientific literature goes back at least as
far as Raman[3)(p135). We present a theoretical model of the bowed string which
predicts the flattening effect. The model also deaseribes within a self-consistent
framework some of the effects of bow force upon waveform detail, vindicating ideas
which were first put forward by Cremer and Lazarus[4,5) and further developed b
Schelleng. Progress toward understanding the second phenomenon {the buildup of noise
is reported elsewhere [6]. Its major cause is a mechanism depending on the finite
width of the ribbon of bow-hair in contact with the string.

When slight flattening occurs, observations show that the motion of the string
remains qualitatively similar to the normal Helmholtz motion, with a single, somewhat
rounded, ‘corner' travelling back and forth along the string. Observations also show
the expected drop in frequency, equivalent to a delay in the round«trip time of the
corner. The delay can happen only at the bow,.so we must study in detail the processes
of capture and release of the string.

Previcus studies of these processes ylelded important insights into the changes
In waveform as bow force is varied, but did not predict the flattening behaviour we
have described. Cremer[5]) followed the course of the Helmholtz corner, examining the
detailed changes in its shape occurring at different points in the cycle and seeing
how these various changes can reach equilibrium to give a precisely periodic motion.
Schelleng(1] showed how Cremer's 'secondary waves' produce the pattern of 'ripples!
observed in velocity waveforms. We extend their discusasion in two stages. In the first
instance we follow Cremer and negiect the secondary waves. We later give examples
of computer solutions which take them fully into account, and in the process simulate
Schelleng's ripples. We begin with a re-sxamination of exactly what happens at the
bow; this will reveal a new phenomenon which appears to account for the flattening
effect.,

Suppose an ideal Helmholtz corner, as shawn in figure 1a, leaves the bow
travelling towards the bridge. By the cime it returns to the bow it will have been
inverted and somewhat rounded, as shown by the solid curve in figure 1ib. For the
purposes of clarity in the discussion it is best to begin by assuming a form of
rounding which is symmetric in time, and which is the same for the two sections of
the string (although with different delays, depending on the distances to bridge and
nut). & model string with these properties will be called 'quasi-symmetric’; it has
harmonic overtones. but damping which increases with frequency.
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Figure 1. Successive waveforma for the Helmholtz corner, with dashed curves echoin
the preceding stage in b-d (after Cremer and Lazarus[4]). Inc andd, Vo i5 a conatan
'DC offset' arising from the fact that F(t) has a positive mean value.

We now ask what happens to the rounded corner as it passes the bow. in the absence
af the bow, the velocity v(t) at this point would simply be équal to the inecident
velocity wave vina{t) which we have plotted in figure 1b, The frictional force F{t)
exerted by the bow produces an additional contribution to v(t), so that

v(t) = vipo(t) + F(t)r22 (1

where Z is the relevant wave impedance[7], a constant property of the atring. F and
v are alsoe related by the friction law: in the usual idealisation, F/Fyp, where Fp
is the normal component of bow force, has a functional dependence upon v of the kind
sketched in figure 2[8). From eq. (1) and figure 2 we can find F and v from the known
Vine @bt any given instant: they may be read off the friction curve as its intersection
with the straignt line of slope 2L/Fy shown in figure 2.Cremer and Lazarus[4,5]
discussed the case in which the bow force is sufficiently small that the slope of
the friction curve is everywhere less than 2%/Fp, so that there is a simple one-to-one
correspondence between the point of intersection and vj,.. This requires Fp<Feprits
where

Fopit = 1z (2)

max. slope of graph in fig. 2

Figure 1c shows vypa(t} (dotted) and the corresponding v(t) (solid) when Fp i3 well
below Fopiy. The wave transmitted past the bow towards the nut has the same shape
v(t}, and returns from the nut after being inverted and rownded again as in the dotted
curve of figure 1d. This vy .(t) now produces the v(t) shown in the solld curve of
figure 1d, and another round trip begins. The final curve (1e) shows the shape of
the periodic solution which 1s closely approached after this chain of events has been
repeated a few times. The period of the motion is precisely equal to the fundamental
atring period(9]. g1
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Figure 2
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Now our proposed explanation of flattening hinges on a physically correct
resolution of the ambiguity which arlses when Fp*Fgpit. The amblguity, which was
first pointed out by Friedlander[10], is illustrated in figure 3, There are how three
intersections (vy, vo and V3) of the straight line and the frictlion curve, and we
must decide which 1s appropriate at any given instant. It may be shown that the answer
involves a kind of hysteresis, an essential difference between capture and release.
The string chooses one of the two outer intersections (vq or v3}, according to the
following rule:

5lipping (v=vq in Figure 3} will persist until vi,, reaches the value v, shown
in figure 4a; then capture occurs (v jumps to v3). Sticking (v=v3) will persist
wmtil vino reaches the value vy shown in f‘igureqtb; then release oceurs (v jumps
Lo vq).
The parts of the friction curve shown dotted in figure 4 are traversed instantaneously
in any model where (1) is regarded as exact. For a real string, these sections are
presumably traversed in a finite but very small time.
% /

Figure U (a} Capture (b} Release

In figure %, we plot the series of waveforms equivalent to those of Figure 1
but with Fy*Fopip. Notice now that each time a rounded corner passes the bow, it has
a 'pite' taken from it as the velocity jumps the relevant gap in figure 3, creating
a discontinuity in v(t).
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Figure 5. Same as figure 1, but with Fp>Ferit

Hysteresis means that the bite removed on release is blgger than that on capture.
This produces a delay in the round-trip time of the Helmholtz corner, giving the
flattening effect. The extent of flattening depends on the amount of hysteresis as
well as on the amount of corner-rounding, s0 that the model predicts behaviour
qualitatively simllar to that commenly observed. For example, we now understand why
notes high on a violin G string are particularly prone to flattening: corper-rounding
1s most drastic there.
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We now verify that the same effects occur in fully consistent computer
simulations for the same quasi-aymmetric bowed string. Two methoda have been used,
one using an integral-equation formulation [6] to find perlodie sclutions, the other
simulating transient motion directly and walting for the solution ta settle down ta
periodicity. The methods have been ghown to produce identical solutions given the
same eonditions. Examples of the resulting v{t) waveforms are shown in figures ba,
b and e, the first being for Fp=Fapit and the others for Fp>Fgpit. In Figure 6c the
value of Fp is very close to that for breakdown to a raucous regime : the bite taken
on release oocupies the full height of the pulse[11]. That at capture is far smaller,
and the note has flattened by about 50 ¢cents (1/2 of a semitone}. Details of the pulse
shapes are different from those in figures le and 5¢, especially for large Fy, because

the secondary waves are now accounted for.
VoM § N .

Figure 6. Veloclty waveforms at the bow, from computer solutions for three values
of Fp. The ideal Helmholtz pulse iz shown dotted in each case, and the 'bites' are
indicated by arrows.
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