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When a string player presses sufficiently hard with his how, the musical note
gives way either to the familiar raucous 'beginner's noise' or, if the bow armis
steady enough,'to more or less stable oscillations at pitches much lower than the
fundamental string pitch. The reason why some such catastrophic breakdown must occur
was made clear by Schelleng in his penetrating paper on the bowed string[1]. As
Schelleng realised, maximum bow force in practice is generally less than the force
causing breakdown, and it is signalled by oneof several less drastic phenomena.

of these phenomena, two are particularly important. The first is a very slight
deviation of pitch — almost always on the 'flat‘ side of the string tuning — as bow
force increases. This flattening is easily demonstrated-with the bow a moderate
distance from the bridge at a low bow speed[2]. when flattening is audible, pitch
is sensitive to bow force so that control of intonation becomes difficult. Players
avoid this regime. The second phenomenon is the gradual buildup of noise accompanying
the musical note, which is noticeable when tryingto play more and more loudly near
the bridge. This noisy regime is frequently used to deliberate musical effect, but
the noise can reach an unacceptable level, depending on context. This imposes the
other major limitation on bow force in practice.

The physical causes of neither phenomenon have beenelucidated as far as we know,
although mention of flattening in the scientific literature goes back at least as
far as Raman[3](p135). We present a theoretical model of the bowed string which
predicts the flattening effect. The model also describes within a self-consistent
framework some of the effects of bow force upon waveform detail, vindicating ideas
which were first put forward by Cremer and Lazarus[H,5] and further developed b
Schelleng. Progress toward understanding the second phenomenon (the buildup of noise¥
is reported elsewhere [6]. Its major cause is a mechanism depending on the finite
width of the ribbon of bow-hair in contact with the string.

When slight flattening occurs, observations show that the motion of the string
remains qualitatively similar to the normal Helmholtz motion, with a single, somewhat
rounded, 'corner' travelling back and forth along the string. Observations also show
the expected drop in frequency, equivalent to a delay in the round-trip time of the
corner. The delay can happen only at the bow, so wemust study in detail the processes
of capture and release of the string.

Previous studies of these processes yielded important insights into the changes
in waveform as bow force is varied, but did not predict the flattening behaviour we
have described. Cremer[5] followed the course of the Helmholtz corner, examining the
detailed changes in its shape occurring at different points in the cycle and seeing
how these various changescan reach equilibrium to give a precisely periodic motion.
Schelleng[1] showed how Cremer's 'secondary waves' produce the pattern of ‘ripples
observed in velocity waveforms. He extend their discussion in two stages.in the first
instance we follow Cremer and neglect the secondary waves. He later give examples
of computer solutions which take them fully into account, and in the process simulate
Schelleng's ripples. He begin with a re-examination of exactly what happens at the
bow; this will reveal a new phenomenon which appears to account for the flattening
effect.

Suppose an ideal Helmholtz corner, as shown in figure 1a, leaves the bow
travelling towards the bridge. By the time it returns to the how it will have been
inverted and somewhat rounded, as shown by the solid curve in figure 1b. For the
purposes of clarity in the discussion it is best to begin by assuming a form of
rounding which is symmetric in time. and which is the same for the two sections of
the string (although with different delays, depending on the distances to bridge and
nut). A model string with these properties will be called 'qussi-symmetric'; it has
harmonic overtones. but damping which increases with frequency.
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Figure l. Successive waveforms for the Helmholtz corner, with dashed curves echoin
the preceding Stage in b—d (after Cremer and LazarusHD. In I: and a, v0 is a constan
'DC offset‘ arising from the fact that F(t) has a positive mean value.

he now ask what happens to the rounded corner as it passes the bow. in the absence
of the how, the velocity v(t) at this point would simply be equal to the incident
velocity wave vine“) which we have plotted in figure 1b. The frictional force F(t)
exerted by the bow produces an additional contribution to v(t). so that

v(t) = winch.) ‘ F(t)/ZZ (1)

where Z is the relevant wave impedance“), a constant property of the string. F and
v are also related by the friction law: in the usual idealisation, F/Fb, where Pb
is the normal canponent of bow force, has a functional dependence upon v of the kind
sketched in figure 2E8] . From eq. (1) and figure 2 we can find 1“ and v from the known
vine at any given instant: they may be read off the friction curve as its intersection
with the straight line of slope ZZ/Fb shown in figure 2.Cremer and LazarusIfl,5]
discussed the case in which the bow force is sufficiently small that the slope of
the n-iction curve is everywhere less than ZZ/Fb, so that there is a simple one-to-one
correspondence between the point of intersection and vine. This requires Fb<Fcr1h
where 2 Z

F _h
“it max. slope of graph in fig. 2

Figure 1c shows vinc(t) (dotted) and the corresponding v(t) (solid) when Fbis well
below For“. The wave transmitted past the bow towards the nut has the same shape
v(t) , and returns fran the nut after being inverted and rolmded again as in the dotted
curve of figure Id. This vmcu) now produces the v(t) shown in the solid curve of
figure 1d, and another round trip begins. The final curve (he) shows the shape of
the periodic solution which is closely approached after this chain of events has been
repeated a few times. The period of the motion is precisely equal to the fundamental

(2)
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Now our proposed explanation of flattening hinges on a physically correct

resolution of the ambiguity which arises when “Her”. The ambiguity. which was

first pointed out by Friedlanderho], is illustrated in figure 3. There are now three

intersections (v1, v2 and V3) of the straight line and the friction curve, and we

must decide which is appropriate at any given instant. it may be shown that the answer

involves a kind of hysteresis, an essential difference between capture and release.

The string chooses one of the two outer intersections (v1 or V3), according to the

following rule:

Slipping (v=v1 in figure 3) will persist until vine reaches the value vc shown

in figure Ila; then capture occurs (v Jumps to v ). Sticking (v=V3) will persist

until vine reaches the value vr shown in figureib; then release occurs (v jumps

to v ).
The parts of the friction curve shown dotted in figure H are traversed instantaneously

in any model where (1) is regarded as exact. For a real string, these sections are

presumably traversed in a finite but very small time.

 

  
Figure It (a) Capture ([2) Release

In figure 5. we plot the series of waveforms equivalent to those of figure 1

but with Fb)Fcru. Notice now that each time a rounded corner passes the bow, it has

a 'bite' taken from it as the velocity Jumps the relevant gap in figure LI, creating

a discontinuity in v(t).
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Figure 5. same as figure 1, but with EVEN.“

Hysteresis means that the bite removed on release is bigger than that on capture.

This produces a delay in the round—trip time of the Helmholtz corner, giving the

flattening effect. The extent of flattening depends on the amount of hysteresis as

well as on the amount of corner-rounding, so that the model predicts behaviour

qualitatively similar to that commonly observed. For example, we now understand why

notes high on a violin G string are particularly prone to flattening: corner—rounding

is most drastic there.
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He now verify that the same effects occur in mlly consistent computer
simulations for the same quasi-symmetric bowed string. Two methods have beenused,

one using an integral-equation formulation [6] to find periodic solutions, the other
simulating transient motion directly and waiting for the solution to settle down to

periodicity. The methods have been shown to produce identical solutions given the
same conditions. Examples of the resulting v(t) waveforms are shown in figures 6a,
b and c, the first being for Fb=Fcrit and the others for Fyl-‘crit. in Figure 6c .the
value of Pbis very close to that for breakdown to a raucous regime : the bite taken

on release occupies the full height of the pulse[11]. That at capture is far smaller,

and the note has flattened by about 50 cents (1/2 of a semitone). Details of the pulse

shapes are different from those in figures 1e and 5e, especially for large Fb, because
the secondary waves are now accounted for.

  
Figure 6. Velocity waveforms at the how, from computer solutions for three values
of Pb. The ideal Helmholtz pulse is shown dotted in each case, and the 'bites' are
indicated by arrows.
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