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Introduction

In the theoretical description of waves propagating through
moving media. it is desirable to have a measure of wave 'activity'

which is not only a wave property, i.e. can be evaluated from lin—

earised theory, but which satisfies a ggngggyatigg_ggggtigg when
viscosity and other irreversible processes are neglected. We then
have a convenient way of following the waves as they propagate
from place to place (by evaluating the density and flux appearing

in the equation), or as they are generated or dissipated (by

evaluating the source or sink terms involving irreversible

processes)‘ This is not to be confused with the separate question

of calculating the total transport of energy or momentum brought

about by the waves.“‘

Suitable conservable quantities are well known in special

cases, 6.5. Blokhintsev's ‘energy' density for the case of geom-

etrical acoustics and irrotational, homentropic steady flow.

Blokhintsev's restriction to geogetrical acoustics was removed by

Cantrell & Hart]. while Nhitham and Bretherton & Garretts

retained the geometrical-acoustics assumption but allowed very

much more general mean flows (and types of wave disturbance), For
general mean flows without the geometrical-acoustics assumption

Lighthillj has commented on "how difficult the position is".

However, it has recently become clear6 (as a spin—off from work
on waves in stratified. rotating fluids) how all the conservation

relations in question arise as special cases of a yet more general

relation (eq.5 below) arising from a synthesis of ideas from
'classical field theory‘ (the ener -momentum tensor) with the
more recent work of Eckart7, Hayes Dewar9 and Bretherton.1o
The relation in question is applicable to acoustic disturbances

an arbitrary (unsteady, rotational. heterent opic, rapidly—varying)
mean flows. The relationship with Hhitham's geometric-acoustics
results has been discussed at length by Hayese; here we indicate
how simply the basic exact result, conservation of 'generalised
wave-action', can be derived by elementary means, not involving

variational principles. (For more details see reference 6.)

D scriEtion of the acoustic disturbance in terms of particle
d splacements

By far the simplest theoretical structure for general waves in

fluid flows is obtained when we use the article— 3 lacement

field §()_(,t) as the fundamental disturbance var able.5 (At root,
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the reason is that this gives the simplest way of formulating

Hamilton's variational principle for the disturbance. It is iron—

ical that a well—known attempt to express Hamilton's principle in

purely Eulerian terms. using Clebsch potentials, led to the unin—

tended reappearance of the Lagrangian description in the form of

the celebrated 'Lin constraint'1‘.)

Let 9'(§,t) and §(§,t) be the acoustic disturbance velocity and
mean flow velocity respectively. Correct to 0(a), where a is a

measure of wave amplitude, E is defined to satisfy

5,5 = 2' + ENE : ‘3‘t (say) (1)

(the Lagrangian disturbance velocity),together with suitable

initial conditions, where Dt 5 5/61: .+ L1.V We also have that the

mean value of E vanishes:

amt) = o, - (2)

and that

5:7,; = -(Pv +§.v,a)s —pl. (3)

again correct to 0(a), where fl and p' are Eulerian mean and distur—
bance densities. (A corresponding definition for nonlinear distur-
bances can be given'z, but this will not be gone into here.)

The basic conservable Quantity A.

To attain maximum generality we define the Eulerian averaging

operator as an ensemble average, over an ensemble of wave sol—

utions distinguished by a smoothly varying parameter a . In a

stochastic problem a would range over a 'sample space'; but random

waves are merely one possible case. In a deterministic problem in

which the mean flow is steady, for example.we can generate a suit-

able ensemble by simply identifying awith time t. Then 7—; is
equivalent to a time average. Quite generally, we have the basic

property

{M you} = afl/oa = o (1.)

whenever the ensemble of disturbance fields depends differentiably

upon a, which we shall take to be the case.

The usual equation of acoustic energy (which as is well known is

not a conservation equation whenmean flow is significant) is
obtained by dotting the linearised momentum equation with [3 E1" . If

15.11.?

 



 

Proceedings of The Institute of Acoustics

ON CONSERVABLE HAVE FROPERTIES FOR GENERAL ACOUSTIC DISTURBANCES

instead we take its dot pgoduct with the derivative Fog/bu and

average. there results ‘1 ,after some manipulation involving (h),

(5)

 

where the right-hand side is zero for conservative motion. and

 

A = 534 .af/aa

g = EA + p'oi/ba.

The first term on the right is associated with a fluctuating body

force 3' on the right of the momentum equation, which can represent

either a viscous force per unit mass, or a given distribution of

acoustic dipole strength. The second term on the right involves

the Lagrangian disturbance pressure p1 = p' a !.V p,and the

Lagrangian disturbance entropy S‘ = S' + £.V E, which is evidently

zero for adiabatic motion. The coefficient s is defined by

E = (a lnfi/o§)§. No approximations whatever have been made, apart

from that of small disturbance amplitude a; and even that can be

removed if we define z for finite—amplitude disturbances in a suit-

able way6v12. A may be called the generalized wave-action.

The reduction of this result to the more special results of

Blokhintseg Bretherton & Garrett5 (in which a is replaced by

phase shine) and Cantrell & Hartfl, is indicated in reference 6.

The relation to Hamilton's principle and the energy—momentum tensor

is also discussed there. It turns out that the formulation in terms

of I also leads to a particularly powerful way of describing the

back effect on the mean flow giving rise to such phenomena as rad-

iation stress and acoustic streaming.12

Concluding remarks

It appears that the basic conservation relation (5) (with a

replaced by t in the commonly important case of steady mean flow)

may provide a generally useful answerto the long—standing problem

of finding a conservable wave property for sound waves on a mean

flow which can be rotational and heterentropic. For instance in

the case of shear flow 5(y,z) in a duct, past an arbitrary obstacle,

constriction, or enlargement, eq.(5) may yield a way of expressing

the acoustic scattering matrix in unitary (and therefore more com-

pact) form.'3 The use of Clebsch potentials,which appears to be the

only alternative in this situation presents difficulties of the

kind found in reference 13. eq.(1h5. However, to show that (5) is

not subject to similar difficulties it must be demonstrated that
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(1.1) contains no contributions of the form func{x—E(y,z)t, y, 2}
which make l.h.s.(1) zero)'and this has so far been done only for
the two—dimensional case mmz = 0 when the mean vorticity gradient
fi"(y) does not vanish.

 

0n the question of physical interpretation, it should not be
thought that equation (5), even for the case of steady mean flow,
is a straightforward expression of conservation of energy and/or
momentum. Strictly speaking, the derived quantities arising in
place of A when ensemble averaging is replaced by time or space
averaging are pseudoenergy and pseudomomentum (which are associated
respectively with temporal and spatial symmetry of the mean flow),
and ngt energy and momentum Which are associates with temporal or
spatial symmetry of the total physical problem-1 and are not gener-
ally wave properties). I
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