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An investigation into the causes of aperiodicity in bowed-string oscillations is
made using a combination of simple experiments, mathematical analysis, and
computer simulation, and the status of theoretical models which idealise the
behaviour as exactly periodic is thus assessed.l Three distinct sources of
departure from a strictly periodic, Helmholtz type of motion are identified
(§§l.2,3 below). The third is the most important musically, and depends on
differential slipping of the bow hairs during the nominal sticking phase of the
Helmholtz cycle, a phenomenon not previously studied.

I. Flyback jitter.

'Flyback jitter', or cycle-by-cycle variation in the period of the sawtooth
waveform of the transverse force exerted by the string on the bridge, reflects
random variations in the timing of the round trip of the Helmholtz corner or
propagating velocity jump. It can be measured very accurately from the
zero—crossings in the steep flyback in the digitized waveform. The interesting
suggestion has been made [A] that flyback jitter might be intrinsic to the basic
nonlinear dynamics of the bowed string. Superficially this seems consistent with
the fact that certain simple mathematical models predict instability of the
Helmholtz motion, as pointed out some time ago by Friedlander [5].

Careful measurements of flyback jitter were made under a variety of conditions.
Two examples of waveforms and the correponding statistical distributions of
period lengths are shown in Fig. 1, for opposite extremes of string thickness
and length. Normal bowing by hand was used, with bow force not far above minimum
in the cases shown, and great care was exercised to keep conditions steady. Fig.
1a is for a very thin (0.007 inch diam.) 'rocket—vire' string on a laboratory
monochotd 450nm: long; Fig. lb is for a violin G string stopped at 715“: (near
the end of the fingerboard). The standard deviations of these distributions are
0.04 cents (comparable to experimental error) and 2.3 cents respectively, where

FIG. I ,n
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"Details are to appear in Acustica later this year [1]; preliminary results were
mentioned in two earlier publications [21.[3].
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a cent is a hundredth of a semitone or 0.0006 of a period. (For comparison. the

standard deviation for just-audible Gaussian jitter in pulse trains presented

via headphones is typically of the order of 5 cents [6].) Many other cases were

triedl bow force being varied as well as string length and thickness.

The observed parameter dependen‘ce of the jitter supports neither the suggestion

that such jitter is intrinsic to the basic nonlinear dynamics, nor that it has

any connection with Friedlander'a instability. Rather, the results consistently

support the hypothesis that flyback jitter arises principally from small.

externally-imposed irregularities, such as the uneven distributionof rosin on

the bow-hair. Such irregularities can be expected to produce jitter roughly

proportional to the flyback time s, or characteristic time of the velocity jump

at the Helmholtz 'corner': r or some fraction of it represents the available

latitude for variations in the timing of the transitions from sticking to

slipping and vice versa. it tends to scale with string thickness. A parameter

dependence similar to that in the observations was exhibited by computer

simulations with a model having finite c (using the efficient computational

scheme described in references [7], [5]) when and only when the friction

characteristics were randomly varied from time-step to time-step.

Z. Subharmonics and Friedlander's instability

The second source of departures from Helmholtz periodicity is the excitation of

subharmonic perturbations. These do turn out to have a connection, in a certain

sense. with Friedlander's instability.

Consider a space-time diagram such as Fig. 2, for a string carrying a Helmholtz

motion. The path of the Helmholtz corner is shown by the dashed zig-zag line.

The state of the bow-string contact is indicated by the heavy, horizontal line

segments, which represent sticking, and the intervening 'uindous' uhich

represent slipping. The term ‘windou' is physically apt because. as was pointed

out some time ago in Schelleng's important paper [9]. the bow during slipping is

nearly transparent to any extra disturbance incident upon it, owing to the

near-constancy of the coefficient of sliding friction. During sticking the bow

acts. by contrast, as a reflecting barrier to small disturbances.

FIG. 2.

 

One consequence (which occasionally has audible results as us shall see) is that

there exist periodic paths whose periods are integral multiples n of the

fundamental string period. The solid zignzag line in Fig. 2 gives an example

with n=4. A little geometry shows that such paths are indeed exactly periodic.

and that a given value of n is possible whenever the position 13 of the bow

expressed as a fraction of string length lies between l/(n-l) and l/(nH).

la most models neglecting torsional string motion. reflection from the sticking

bou is perfect; for the real bowed string it is much less so as has been clearly

pointed out by Cremer [8], [10]. If losses including the scattering into ‘

torsional modes are sufficiently lowI ncgative resistance at the boar during

slipping [9] can cause. perturbations propagating along aubharmonic paths to

become self-excited; this, in fact, is the physical mechanism behind
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riedlsnder's instability. A complete analysis has been carried out for a simple

owed-string model (the 'Ranan model‘ described e.g. in reference II”). It

nvolves keeping‘ track of partial reflections at windows, and therefore

onsideration of a set of interlocking subharmonic paths all of the same order.

is analysis does give quantitative agreement with the exponential growth rates

nd stability thresholds predicted by Friedlander's original method and its

xtension to the Raman model. The results have been further checked by computer

imulations.

he subharmonic mechanism appears to be more important for understanding the

ehaviour of idealised mdels neglecting torsional _string motion, than for

nderstanding that of real strings under normal playing conditions‘. Losses to

orsionsl modes seem more than enough to prevent self-excited subharmonic

erturbations in practice. Nevertheless, the existence of the subhsrmnic paths

ans that some transients arising from stray disturbances to the Helmholtz

tion tend to exhibit subharmonic quasi—periodicities over limited times, and a

faint, muffled subhsrmonic of the note being played can sometimes be heard

especially if pitch is high, bow force large and bow speed smell. An example of

the string velocity observed near the bowing point is shown in Fig. 3, obtained

FIG. 3.
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from a violin E string stopped at 1730 Hz and bowed near 13 = 1/3 with an

ordinary how. A third subharmonic (577 Hz) was audible. The pattern showed

little persistence, let alone regularity, over longer times.

3. Audible noise

 

The obvious noise which builds up behind the musical note when a violinist tries

to play more and more loudly near the bridge turns out to be due to another

mechanism altogether. Subharmonica are usually inaudible under these conditions,

and flyback jitter is usually observed to be well below the nominal audibility

threshold even when the noise is very obvious to the ear. Observations of the

bridge-force waveform have consistently shown, however, that when the noise is
prominent so too are the irregular 'spikes' two examples of which are shown in

Fig. lamb. These are not to be confused with the more familiar types of waveform

(a) (c) a iti'\.rr\\i‘\i\ (e)W

(L)‘ ’v (4) JW“«.~"“~I\~ (3W
perturbation noted by Helmholtz, Raman and Sthelleng l9] and which may
predominate when the bow is further from the bridge. The average timing and

amplitude of the spikes are sensitive to bow force, the second trace being for

larger how force (and louder noise relative to the musical note). Similar spikes
appear in the waveform, accompanied by similar-sounding noise. when the string

is bowed with a smoothed, rosined stick having two parallel ridges separated by

a distance of the same order as the width of the bow hair, both ridges being in
contact with the string (Fig. 4c,d). They disappear when only one ridge is in

Contact. This indicates that the phenomenon is connected with the finite width

 

FIG. 4.
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of the ribbon of bow hair; and the ‘spikiness' suggests at once that

differential slipping is the cause.

This hypothesis is shown to be self-consistent and to fit the observed farts (a)

by an order-of—magnitudc analysis of the frictional forces required to prevent

differential slipping, which shows clearly that it must occur, and (b) by

computer simulations for the case of two rigid 'bow hairs' (representing most

closely the experiment with the two—ridged stick) again using the efficient

numerical model introduced in reference l7].

Results from two of the simulations are shown in Fig. 4e,f, the lower trace

again corresponding to the larger bow force. The qualitative variation with bow

force of the timing of the spikes is well reproduced. As can be seen from

further details presented in {I}. the Spikes in the simulations are

unquestionably caused by differential slipping events, in most of which the

'hair' nearest the bridge slips while the other sticks.
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