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1.0 INTRODUCTION

Fibre reinforcement of plastics usually results in very strong
and stiff materials, whilst the density is low especially when
carbon fibres are employed. Composites of this type offer to the
design engineer a choice of fibre configurations and he is
therefore free to design components in which the directions of the
high stiffness or strength properties are most advantageous. If,
however, a high loss plastic is used as the bonding matrix, it is
also possible to take into account visco—elastic damping and utilise
the effect to control the modes of vibration in components which may
be subjected to periodic forces.

In general, materials of high stiffness to density ratio such
as ceramics have low internal damping. Loss factors, defined as the
ratio of the imaginary to real part of the complex modulus, less
than 10‘5 have been reported in ref 1. In this class of material,
the stiffness to density ratio is such that the longitudinal wave
velocity is-about 10 km/s. High loss materials such as rubbers and
many plastics usually have comparatively low stiffness to density
ratios resulting in longitudinal wave velocities around 2 km/s, but
the loss factor may be as high as 2.0 even at room temperature. The
high damping is due to molecular relaxation and in consequence is
highly dependent on temperature and frequency, typical of all
visco—elastic materials. This fact must be taken into account
especially when designing components for acoustic applications where
a wide range of frequency in their dynamic loading could be
encountered.

Some of the more useful properties of ceramics and lossy
polymers are combined in fibre reinforced plastics. The contribution
from the matrix is the major factor in the determination of the
internal loss. The fibres, on the other hand, affect the stiffness
and strength without directly affecting the loss although it will be
shown later that the loss factor of these composites is dependent on
the values of fibre stiffness. The stiffness to density ratios,
however, are similar to the ceramics. The longitudinal wave velocity
in high modulus carbon fibre is as high as 15 km/s being surpassed
only by a few materials, the best known of which is diamond. The
resulting longitudinal wave velocity in fully aligned composites can
be around 12.km/s which is comparable with the values for ceramics but
the internal loss factors associated with the various modes of
vibration are more like those for rubbers and high loss polymers. The
high velocity and damping can be used with advantage in the design of

 



   

acoustic components since the frequencies of any resonances will be

much higher than those in similar components made from conventional

materials and the higher damping leads to a. smoother frequency

response.

2.0 ELASTIC PROPERTIES OF FIBRE REINFORCED PLASTICS

The simplest reinforcement system is that in which the fibres

are fully aligned and is the only one considered here. The

I stiffness is greatest along the fibre direction and least in the

transverse direction. The elastic properties are determined by the

volume ratio. vf, . and the elastic constants of both constitutents.

If the fibres are packed into a. regular hexagonal array, the

elastic stiffness is isotropic in the plane normal to the fibres.

The elastic constants of composites of this type have been measured

using an ultrasonic pulse technique developed at NFL in which the

velocity of longitudinal and shear waves are measured in a wide

range of direction in all three principal planes. This is

described in ref 2. If the elastic constants along the principal

axes are deduced from the measurement of the velocities, it is

possible to calculate the rotated. or 'effective' elastic stiffness

(longitudinal and shear) for, any system of axes. Measurements made
on high modulus carbon fibre—epoxy resin composites (vf =- 0.7) have

shown that the tensile stiffness ratio between the fibre and

transverse direction is about 30:1. Values of the elastic

properties of high modulus and high tensile st'rsngth composites for

various volume fractions are given in ref 3.

3.0 PREDICTED LOSS PROPERTIES OF COMPOSITES

If we assume that the fibres are free from dynamic loss,

we can derive approximate. expressions for the loss factors of the

fully aligned composites. The three cases of particular interest

relate to (a) tensile or bending load in the fibre dire'ction,
(b) tensile or bending load in the transverse direction and (c) shear
in the fibre direction.

(a) Tensile loading in fibre direction.

The assumption made in this case is that the fibres and matrix

are subjected to equal strain and'the stress resulting in each

constituent is determined by the values of the two Young's moduli

E1f and E3. This is based on Voigt's hypothesis and is approximately

true provided we iglore the lateral forces resulting from the

differences in the Poisson's ratios 'of the fibre and matrix. The

complex Young's modulus of the matrix E; = El; + iEg, hence the loss

factor is given by:
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The complex Young's modulusin the fibre direction for the composite

derin from the stresses in the fibre and matrix is:

Elle a Vf E1f + (1 _ vf) E; 7 (2)

where E1f is the Young's modulus of the fibre along its length

and Vf the volume fraction.

The loss factor of the composite,- defined as the ratio of the

imaginary to real part of c is given approximately by:
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Since the fibre modulus E1f occurs in the denominator of equation
(3) it follows that the loss factor falls very rapidly with volume
fraction as shown in fig 1.

m LOADING

O'l

0‘0!
9 o o

q 2

c
m
o
-
I
u

Io
n
lu

na
r—

d"

9 c u

 

O
0 0-2 0-4 06 DB I'O

We Iranian—V,

LOSS FACTW |N CmSITES YENSIII LOAD IN FIBRE

DIRECYION FUUJ Ale TYPE I cum m5

VOIGT AVERAGE

Fig 1

(b) Tensile loading in the transverse direction.

When load is applied in the transverse direction the

assumption is that the fibre and matrix are both subjected to equal

stress and the resulting strains are proportional to the

compliances of the fibre and matrix. The modulus based on the Reuse

hypothesis is therefore:

 

1 v (1 —v)
f ' f

_ = _ + , (4)

ESc E21“ E5

E2f is the Young's modulus of the fibre in the transverse

direction and in practice is only about one tenth of the

longitudinal modulus E1f. '

,The composite loss factor in the transverse direction can

similarly be deduced from the ratio of the imaginary to real part

of equation (4) and is given approximater by:

d a (1 ' Vf) Ear dm
2c (5)

“f E51 + (1 ‘ Vf) Ear

 

and the dependence of :120 on vf and dm is shown in fig (2).
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The Voigt and Reuse values given by equations and (4) give
upper and lower limits of the longitudinal and transverse moduli

respectively. No account is taken of the interaction between the

fibre and matrix which could influence the values but they do

provide a useful estimate of the composite properties.

(0) Shear modulus in the ibre direction.

Several models have been used for the derivation of the shear

modulus of unidirectional composites. One, due to Hashin and

Rosen (ref 4) treats the composite as parallel cylindrical units

consisting of a. fibre surrounded by a. co—axial column of matrix. In

order to fill all space, the units are allowed to vary in diameter

but are assumed. to have a constant fibre fraction equal to that of

the composite. The model therefore represents the random packing

arrangements in real materials. Values of. shear modulus in the

fibre direction can be derived from expressions for this model

given by: ‘ '

a; [cva + vf) + 63(1 — vf)]

Gf(1 —vf) + 6;“ + vf)

 

. (6)

where Gf is the shear modulus of the fibre along the major axis

and G3 = 6,}. + iGl'fi, is the complex shear modulus of the matrix. The

shear loss factor 6.50 is given approximately by:-

1 - vf) (1 + vf)

as. = G; — + '
- cl; Gf(1+vf)+G£1(1—vf) Gf(1-vf)+G;1(1+vf)v V

(7)

  

The dependence of the shear loss factor dac with volume

fraction is shown in fig (3) which is similar to fig (2) except for

the higher values in shear compared with transverse tensile

loading for volume fractions around 0.6.
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4. 0 CONCLUSION

The tensile and. shear loss factors derived above are for ideal

materials in which the fibres are truly bonded to the matrix. Due

to lack of adhesion between fibre and matrix the loss factors in
real composites will always be greater than those predicted in the

equations. If any voids or delamination exist in the mouldings, the

effect of these will likewise increase the apparent lossfactor.

If any solvent is left in the polymer after moulding, the matrix

loss factor will be influenced by its presence thus affecting the

overall loss in the composite.

The loss values predicted can, however, be used as a guide for

the design engineer who may use this data. to give him minimum values.

He will then have a choice of varying the volume fraction, matrix

loss factor and also the type of fibre employed in the design of

components where optimum stiffness and damping is a. prime

consideration.
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