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ABSTRACT

The active control of flexural waves propagating elong an Euler-Bernoulli beam is considercd. A
theoretical model and computer simulations are presented 10 show how an array of forces can be applied
10 a beam to couple into and suppress & propagating flexural wave. The mechanism of wave reflection and
absorption together with power flow is examined. The control sirategies of minimizing secondary force
effont and maximizing power absorption by the secondary force array are discussed for an infinite and a
finite beam.

INTRODUCTION

Practical enginecring structures are often fabricated from & number of components held togethee by
structural elements that may be modelled as onc dimensional waveguides. Examples of such staactures
gre truss beamns, antenng booms and struts end tie-bars found in machinery installations in ships,
submarines and helicopiers, Active control of vibeations in these structures involves cancelling unwanted
disturbances by deliberately adding secondary controlled disturbances. Rather than adopt global control
of the systemn dynamics 11]{2], another approach is to prevent the transmission of vibrational power
berween the structural components. For this type of local control of vibrations 8 modal modet of the
structure such as that deseribed by Ewins {3] is inappropriate, and the system dynamics can better be
described by 2 wave model [4)15)i6). In gencra), theee wave types will be present in connecting elements
between the structural components; flexural, or out-of-plane waves, longitudinal, or in-plane waves and
torsional waves [7]. Local struciural control of these waves can be achieved by placing actuators along
the waveguides. The conwrolled secondary disturbances can be generated by generic actuators that can
apply either a force. a moment, or a pair of moments in anti-phase (a moment-pair),

This paper restricts the investigation into how forces positioned in & secondary array couple into flexural
waves propagating along a Euler-Bemoulli beam. If the control of flexural waves are understood, the
behaviour of cther wave types can be deduced by ignoring the near-field terms associated with flexural
waves. The analysis is conducted in the frequency domain which is appropriate for deterministic
disturbances, bul this paper does not address how control of the secondary actustors can be implemented,
i.e. how the magnitude and phase of the sinuscid fed to each actuator can be adjusted in practice.

Two control sirategies are investigated; that of minimizing the secondary effort required 10 suppress a
propagating flexural wave and that of maximizing the power absorbed by the secondary array. Nelson and
Elliont 18] considered the strategy of minimizing secondary effort in the cancellation of noise in an scoustic
enclasure, and this is applied here 10 the structural case. Redman-White ef a/ [9) reponed experiments in
flexura! wave control on an infinite beam wsing a control strategy which maximized power absorbod by
two secondary forces. Nelson er of [10) and Elliott er af {11] have also considered this same strategy in
the ecoustic case, and Elliott concluded that in an enclosed sound field where the primary and secondary
sources are well coupled, this conrol straiegy results in &n increase in the total power cutput into the
enclosure. This paper shows that this control strategy, when applied to & finite beam also results in an
increase in power input.
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2. MODEL OF THE SECONDARY FORCE ARRAY

Consider . an infinite Euler-Bemoulli beam with a S —
secondary force array positioned as shown in figure 1. "L
The displacement at any point along the beam can be ,\f‘ T

described by the equation [4]: 4 a4, 4 ‘
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where the time dependence is suppressed for clarity and 1
no energy loss in the beam is assumed. The Nexural L [fa [ D] &
4
] 4

wave incident on the amay is A, and the waves | 4 \.J \J
generated by the secondary force armray are two near- 5
field waves A, and A,, and two propagating waves A, :
and A, The wave constants either side of the amay, in
the regions of the beam x < 0 and x 2 /, can be Figure 1 A Secondary Force Aray on an

x=0

deseribed by the matrix equation: Infinite Beam
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where E is the modulus of elasticity, / is the second moment of area and & is the flexural wave number,
This eguation gives the amplitudes of the waves generated by the secondary forces either side of the array.
The amplitudes of the waves within the array may be calculated by three similar relationships. These are:
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These are general equations and can be used for any number of secondary forces up 1o & maximum of
four. Should greater than four secondary forces be epplied, then the system of matrices can be extended
with relative ease. The purpose of the secondary force arcay is to generate & et of waves such that at least
the incident propagating wave is suppressed. 1f a single secondary force is applied, the incident wave is
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the only wave that can be suppressed. As the secondary
force array generates four waves, there is a regidual near-
field weve and a propagating wave, upstnream of the array,
and a near-field wave downstream. When more than one
force is applied, additional waves that are generated by the
aray can be suppressed; one wave for each edditional
force. It follows, therefore, that if four forces are applied,
then all waves are suppressed. The non-dimensionalized
displacement of the beam when one w four forces are
applied for selected control strategies ane shown in figures
2-4, where A is 8 wavelength of the incident propagating
wave. In figure 3 the residual waves are both near-field
waves. In figure 4 the residual wave is the negative-going
near-field wave.

To calculate the complex wave constants the magnitude
and phase of the secondary forces are required. They can
be deterrnined from the equation:

1 e™ et W)
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If less than four secondary forces are applied then this
equation can be panitioned accordingly. For example if
only rwo secondary {orces are applied and the propagating
waves away from the amay are suppressed the equation

teduces to: !
[f"] wcagm |l 1 l[ _°} )
Ja PR M

which expands to give:

The similarity should be noted between these equations and
those resuliing from the use of two loudspeakers in a duct
to ehsorb an incident acoustic wave [8). Examination of
equations {8} and {9) shows that the secondary forces
required are infinite when the distance between the
secondary forces equals an integer number of half.
wavelengths of the incident propagating wave. This shows
that it is not possible to suppress both an incidemt
propagating wave and & negstive-going propagating wave
generated by the array at these frequencies,

Tt is interesting to examine the secondary effort required 1o

it
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Figure 2

Beamy  Displacement with Ooe

Secondery Forea Applied to Suppress A,

2 " 5

Figure 3 Beam Displacement with Two Forces
Applied 10 suppress A, and A,. Disiance Betwexn
Secondary Forces o 014

-
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Figure 4 Beam Displacement with Three Forces

Applied to

Suppress A; A, snd A, Distance

Between each Force o 0,12
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T

Figure §

Beam Displacemant with  Four

for the cases depicted in figures 2-4 as a function of Secomdiry Forces Applied 1o Suppress all Waves.
frequency (distance berween the secondary forces divided Distance Betweon each Secondary Force = 0.11
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by a wavelength). The secondary effort required, (E), is defined as the sum of the squared secondary forces
divided by the force required 10 generate the incident propagating wave, which is:
' N
2
2l a0
151

'#hem):" = J4EIK? A, and N is the number of forces. The effort is plotted in figure € end is quantified
in the 1able for a distance of 0.1. ’

: . U—
Number of Forces | 1 2 3 4
Effort Required 1 145 | 589 | 2713
w iy
I can be seen that the effort increases with the number s
of forces, and provided the distance between the forces i
is less than a quarter of a wavelength, the effort
required in all cases decreases with frequency. As the

distance between the forces approaches zero or an
integer number of half-waveclengths of the incident i
propagating wave, then the forces become prohibitively
large. The minimum effort required in all cases reaches
2 minimum when the distance between the secondary
forces is between 0.25) and 0.3,

Figure § Sccondary Force Effort as 8 Function of
Distance between 1the Forces Compared 10 8
Wavelengih

3. ACTIVE CONTROL USING MINIMUM EFFORT

The control strategies discussed above involve reducing
the far-field displacement downsiream of the array 10
zero, and if more than one secondary force is used, to
additionally suppress the remaining waves generated by
the array. Another conwol stralegy is (0 suppress the
incident propagating wave using minimum sccondary
effort. This is a constrained oplimization problem which
is well documented in the literawre, for example [12).
Consider an actuator array with ¥ actuators positioned
sty =0,4,...10 asshownin figure 7. The N
secondary forces may be represented as & vector:

T 1. (5 I ¥ { (11) Fipure 7 A Secondary Foroe Acluator Amay
E‘ [L,(OJ 1) o) .fg.( N)] Positioned on an Infinite Beam

and the posilive-going propagating wave generated by
the secondary foree array is:
A, =ZE (12}

where: Zo-—d_ 1M, .. o 13
4EMI? :

Now, the displacement of the beam in the far-field, downstream of the actuator erray away from any near-
field effects, and suppressing time dependence, is:
W) = A, + A 14)

substiting for A, from equation (12} this becomes:
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W) = ZE, + 4, as)

The object is to minimise the secondary effort, EN'F, subject to the constraint that the dowmstream
displacement is zero, ie. ZE, + 4, = 0. Where ¥ denotes the hermitian transpose, which is the transpose
of the complex conjugate. The Lagrange function (cost function) is thus {8):

J=EPE, + B (ZE, + 4) + BRZE, » Ay (16}
where, p is the Lagrange multiplier, The problem is now reformutated with the constraint incorparated in
the cost function. This new unconstrained function riow has to be minimised. Noting that equation (17)

is of hermitian quadratic form in both £, and i, the complex derivatives of J with respect 10 both the real
and imaginary paris of these quantities arc:

ﬂ + y =32 + A 1
B, J“‘ (ZE, ~ A)) {t?)
& L 4

L AT (18)
8, "o, 7

Where the suffices R and [ denote real and imaginary parts. The minimum value of £ within the
consiraint, is given by setting both equations (17) and (18) to zero. This results in the optimum secondary
force vector

zz¥

a9

E'g..

{1t should be noted that & more general problem of this type occurs in the active control of a sound field
where there are fewer microphones (error sensors) than loudspeskers (secondary sources). In this ease the
Lagrange Multiplier tums out to be a vector and the reader is refermed 1o reference [8] for a full
explanation on how 10 deal with a problem of this type).

Now, substituting for Z from equation {13}, equation (19) becomes:
1
£, - -LERfi et et oMy, eo

The force required to genersie & propagating wave with amplitude 4} is 5= JAEIE® A,. Hence
substituting this into equation (20} and computing the modulus, gives the expression for the sum of the
squared minimum secondary forces:

X 2
U AEYA AL S
This rether surprising result shows that the minimum ’ f\ [\ /\
secondary force vector required 10 suppress en incident l" V V_U
travelling wave is independent of the distance between the

secondary forces and the secondary effort reduces as the
number of secondary forces N increases. The displacement
of a beam with this strategy implemented with four
secondery forces applied, and o distance between the S
secondary forces of 0,14, is shown in figure 8. Upstream . i

of the secondary force there is a panial standing wave, - -
which implies the upstream propagating wave is smalter Figure 8 Normalizad Beam Displacement with
than the incident wave, ie., the amay has partially ehsorbed Four Secondzry Forces Applied. Distance Berurem
the incident wave. ‘The reflected wave (4,) is given by: Secondwy Forces = 0.12

T <

sk
e :
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Figure ¢ Ratio of the Reflecied Propagaii
Substituting the minimum secondary force vector from “';f:e 10 the ln;idenl Wave e

equation (20) gives the expression for the maiio of the
reflected propagating wave to the incident propagating wave:

4 1 [toe™boePlh, oP]) 2y

a4 N
This is plotted for four secondary forces in figure 9, where 7 is the distance between each of the secondary
forces. It can be scen that the magnitude of the A, wave is dependent upon the distances between the
secondary forces compared 10 2 wavelength, but for 0.1 < I/A < 0.4, the reflected wave has an amplitude
which is less than 30% of the incident wave amplitude.

4, MAXIMUM FOWER ABSORPTION

A localised control strategy described by Redman-White e/
al 19] for Euler-Bemoulli beams and Elliot ef o/ [11] for
an acoustic enclosure, is 10 maximize the power absorbed
by & secondary array. On a lossless infinite beam with two y r\J:‘ Q
secondary forces spplied, and at frequencies where -

interaction between primary and secondary near-fields is s Ve
negligible, this suategy is equivalent 10 suppressing the

incident propagating wave and the negalive-going M ' 4 \f\f:
propagating wave genersted by the amsy. Consider the

beam thowm in Fgure 10. The vector of secondary forces a0 wod z-led

which maximizes the power sbsorbed by these forces is Figure 10 A Beam with a Primary Foree Appliﬂi

-

given by: and a Secondary Array with Two Forces
- -l -1
E, 38‘_ va! 24)
I
where £ i3 the real pan of the mobility matrix of the
secondary force array, and M, is the iransfer mobility r
matrix between the primary force and the velocities at the
secondary force positions. This can be re-cast in terms of I;'I
dizplacements, which enables an analysis to be performed
which ig consistent with the control sirategies described o
ahove. This is:
-1 -t . 1 L . bl
E_» .% Xz, J, 3 4 A i
Figure 11 Normalized Beam Diisplocement with

where X, is the imaginary part of the receptance maurix of Ty Secondary Forces Configured 10 Absorb
the secondary force array, and g, is the transfer receplnce Maximum Power

matrix between the primary force and the secondary foroe

positiens. The calculated secondary foroes from equation (25) can be substituted into equations (1)-(5),
which can be simply modified to ncoount for a primary foree, to determine the beams displscement. A
plot of displacement with a distance between the primary end secandary forces of 2.5 and & distance
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between the secondary forces of 0.254 is shown in figure
11. It can be seen that this sirategy involves ahsorbing
the incident wave, as no negative-going propagaling wave
is generated by the prray. The lime averaged power input
by the forces is given by:

P -% Im{f" w} 26)
substituting for the calculaied forces and displacements,
and neglecting near-field waves, gives the power input by

the primary force:
P = ﬂ'—fﬂt

A 27
S8EIE?

which is the same as the power input by a single point
harmonic force on an infinite beam. This shows that the
secondary force array has no effect on the power inpul by
the primary force. The power input by the secondary
forces can be similardy calculated to give:

P/ PR 28)
“ eEn? Zsinkd

and . -0 ‘f!l Py 29)
27 1sEn? |2sinkd

Examination of these equations shows that only £, absorbs
power, and if the near-field interaction between the
secondary forces can be negleaied, it absorbs half the
power that is input into the beam by the primary force, that
is, all the power incident upon it, camried in the propagating
flexural wave, In the more general case when near-field
effects are considered then f, actally supplies power in a
near-field wave which interacts with the near-field wave of
Jfiu» and is absorbed by £,. The magniiude of power input
and sbsorbed by all the forces are shown in figure 12.

This situation changes considerably when a finite beam is
considered, such as that in figure 13. The sicategy of
suppressing 8n incident propagating wave remains
effective, as shown in figure 14, but the sirategy of the
secondary array absorbing maximum power tums out to be
8 poar control strategy to adopt. The reason is that with
boundaries in place, it is possible for the secondary amay
10 influence the conditions at the primary force position,
such that more power is supplied to the beam when the
control girategy is implemented. The result is o large
displacement of the beam upstream of the secondary array.
Figure 15 shows the displacement of the beam when the
secondary forces are adjusted (o maximize power absorbed.
For the simulations presented, 19 damping is included in
the beam model, by way of a complex modulus of
elasticity. This is necessary to enable X, to be inverted.
The effects of this strategy are sell evident, with large
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Figure 12 Power Input and Absorbed by the
Primary and Secondary Forces
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Figure 13 A Finite Beam with One Primary
Force and Two Secondery Forces Applied

I le £
Figure 14 Normalized Beam Displacement with
Two Secondary Forces Coafigurad 1o Suppress the
Incider Propagsting Weve

Figure 15 Normalized Beamn Displacement with
Two Secondary Forces Configured to Absorb
Maximum Power

increases in beam displacement with control. It should be noted that the frequency of the incident wave
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is such that the beam is not resonant {(L/A = 3.25), and the magnitude of the standing wave with control
is frequency dependent. The power input by the primary force before and after control for both strategies
is plotted in figures 16 and 17. Examination of these figures shows clearly that the strategy to absarh
maximum power causes the primary force 1o input mare power with control.

L

i
Figure 16 Power Input by the Primary Force Figure 17 Power Input by the Primary Force
with rwo Secondary forees Configured 1o Suppress with Two Secondary Forces Configured 1o Absorb

the Incident end Reflected Propagating Waves Maximum Power

5. CONCLUSLONS

A model of » secondary force array which couples into flexural waves on an Euter-Bemoulli has been
proposed, together with examples of how the secondary amay can be used U0 suppress an incident
propagating wave and some or all of the waves generated by the array. Two additional contro) strategies
have been considered; one which minimizes the secondary effort required (o suppress a propagating wave
and one which absorbs maximum vibrational power. It was shown (hat although the strategy of maximizing
the power absorption of the secondary [orce array is a viable control strategy on an infinite beam, it is not
on a finite beam, 85 it causes more power to be input by the primary force. Maximizing secondary power
gbsorption would thus not eppear (0 be a viable conwol strategy on 8 finite beam if global control of
vibration is required.
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