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INTRODUCTION

The technique of calculating the farfield of a sonar array from near-

field pressure measurements made on a closed surface surrounding the array

has been successfully demonstrated at AUWE for both plane and cylindrical

measurement surfaces (ref 1, 2).

This paper describes a method of estimating the errors in the predicted

farfield of a sonar array in terms of the random errors in the nearfield

pressure amplitude and phase. The analysis is formulated in terms of the

variances of an ensemble of similar nearfield amplitude and phase measure—

ments and the variance of the resulting ensemble of predicted farfield

pressure patterns. This enables the accuracy of a particular predicted

farfield pattern to be estimated in probabalistic terms from knowledge of

(the variances of the nearfield pressure amplitude and phase measurements.

The related problem of estimating the errors in the farfield of radar

antennae has been investigated by several authors (see for example ref 3).

However, in this paper the problem has been formulated directly in terms of

the variance of the farfield end nearfield pressures and the appropriate

exact Green's functions for the particular nearfield measurement surface

geometry. This enables the farfield errors to be calculated for nearfield

measurements made on any surface where the appropriate exact Green's function

can be evaluated. The theory deVeloped applies to both transmitting and

receiving arrays although for brevity only the former is described.

/

THEORY

 

The farfield of a sonar array can be calculated from knowledge of the

near-fish; pressure on a known surface enclosing the array by (see for example

ref 1, 2 ,
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where T(£) is the complex pressure (amplitude and phase) at a point X, x— —1
is a point exterior to the surface of integration 3, X is a point on the

“(-51 ' éo) -°
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function for the particular geometry assuming Dirichlet boundary conditions

on the surface S with an outward normal n. Thus by measuring the nearfield

pressure on the surface S enclosing the array under test the farfield of

that array may be calculated using relation (1). In practice there will be

errors in the measurement of the nearfield pressure T(§°) and it is the

surface S and is the normal derivative of the exact Green's

 



  

effect of these errors that is of interest here. It is assumed that the

distribution of errors in the nearfield amplitude and phase are Gaussian

with knOWn variances and zero mean.

In practice the nearfield measurements are made at discrete points

and so the integration is replaced by a summation which, using the mid

point formula, gives the farfield pressure as,

m)Tan gyms“) m
In n

'where Amn is the area associated with each measurement;

For a function of several variables F = F (x, y, z ...) we may write

the variance of the function in terms of the variance of the arguments

as (ref h),

a=eztwaW4sfibw w
assuming that there is no correlation between the arguments or higher

order terms ie,
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Hence this may now be applied to relation (2) to give,
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This is a quite general result for the variance of the ensemble of farfield

pressure amplitude, or root mean square power patterns in terms of the

variances of the nearfield pressure amplitude and phase and the exact

Green‘s function for the particular surface of integration.

The particular statistics of the resulting farfield amplitude will

depend on the relative magnitude of its deterministic and random compo-

nents. In caseswhere the deterministic component is large compared with

the random component is

“(W-'2’ "lied!
the farfield pressure amplitude will obey Gaussian statistics. Where

the random component dominates ie, '

2 2
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the farfield pressure obeys Rayleigh statistics. This enables the proba-

bility of a given error in the farfield prediction to be calculated (see

Ref 5).

 



  

1.2
SOURCE OF RANDOM ERRORS

In a ncarfield measurement system ’the measurement transducers are used

to measure the nearfield pressure amplitude and phase generated by the

sonar array under test, at set positions Lam around the array. These

measured values T(§°m) are then used in the evaluation of the diffraction

integral relation (1) for the particular measurement surface geometry,

to give the farfield pressure, T(§1).

The two main sources of random errors in the system are those due to

the Voltmeter and phasemeter used to measure the output of the measurement

transducers and random errors in the positioning of the nearfield measure—

ment transducers. The meter errors can be deduced from standard technical

literature. The positional errors will depend on the particular relation

between the nearfield and the measurement surface geometry.

As an example of estimating the effect of the positional errors on

the nearfield measurements, consider a sonar array generating a plane

wave field in a given direction = o) with measurements made around

the array on a cylindrical surface. The nearfield phase is given approx-

imately by,

P = 317:3- cos }! where a is the radius

of the measuring surface and e (15) is the phase at the point (a, o) in

polar co-ordinates. Now this may be rewritten in term of the gariance

of the circumferential and radial positional errors, o'x and a"1

respectively, using relation (3), as

2 . 2 2 2 2
0'8 = (21(5111 dx + (21005 o“

The amplitude errors will depend on the particular nesrfield distribution

for which it is difficult to give a general form, but normally the

amplitude errors will be less significant than the phase errors.

DISCUSSION

It can be seen from relation (1;) that the magnitude of the far-field
error due to the nearfield amplitude errors is independent of the

deterministic nearfield amplitude or phase. Thus to minimise the errors,

near-field measurements should only be made in regions where the deternin~

istic amplitude makes a significant contribution to the farfield. The

nearf‘ield phase errors, however, contribute to the farfield amplitude in

proportion to the corresponding deterministic nearfield amplitude. Thus

to minimise the errors the neerfield phase accuracy should be greatest

where the deterministic amplitude is greatest. It should be noted that

the farfield errors due to the nearfield phase errors do not in general

have the same angular distribution as those due to nearfield amplitude

errors.

The relative importance of the nearfield amplitude and phase errors

can be clearly seen by rewriting relation (1.) as,  ___J 
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Thus the variance of the nearfield amplitude normalised by the square of

the deterministic value will contribute with the same magnitude,“ the

variance of the nearfield phase (radians).

In addition the accuracy of the predicted farfield amplitude will

improve in proportion to the square root of the number of independent

measurements. Consider the ratio of the farfield variance to the square of

the deterministic farfield pressure amplitude from relations (2) and (5).

This has the form of the ratio of the "sum of the squares" to the “square

of the sum". For simplicity consider a plane nearfield measurement surface

with 11, in the farfield, then the Green's function is independent of

mu .
and we may write

.0 l

   

It can be seen clearly in this case that the farfield amplitude accuracy

will improve as the square root of the number of independent measurements,

assuming that the amplitude and phase variances are independent of m and n.

EXAMPLES

As an illustration of the foregoing theory consider the case of a

cylindrical array enclosed by a cylindrical measuring surface radius

a = l...857\ whose beam pattern had a maximum sensitivity of 063 and first

side lobe about -11+dB re the maximum. Suppose also that 61.. nearfield

measurements are made circumferentially of the nearfield of this array

and the farfield predicted from these values.

Case I:- random ermrs in the nearfield amplitude only witha

standard deviation of 32% of the maximum deterministic nearfield

amplitude. This would give rise to a farfield variance at its

highest of about -15dB re the maximum of the deterministic

pattern calculated from relation (L). This is much larger than
would be expected in a real system and would completely mask the

true farf‘ield patterns except for the main lobe. The side lobes

almost certainly obeying Rayleigh statistics. See Fig 1.



 

1.2
Case II:— Random errors in tho nearfield amplitude only with
a standard deviation of 8% of the nmximum deterministic value.
This would give rise to a farficld variance ofabout ~27d3 re

the maximum of the deterministic pattern calculated from
relation (4). This is about typical for a real system with
the first ~20dB of the beam pattern being quite faithfully

reproduced, and obeying Gaussian statistics. See Fig 2°

 

Case IIIz- Random errors in the nearfield phase only with a
standard deviation of 0.16 rads Q~9°). This would give rise
to a farfield variance of similar level to Case II although
with a different angular distribution, calculated from
relation (A). If these phase errors were caused by radial
positional errors only then this would imply a standard
deviation in the radial position of about 0.0251. See Fig 3.

It can be seen from this last example that the positional errors can
contribute significantly to the overall farfield errors.

CONCLUSIONS

The main points for consideration in designing a nearfield measure-
ment system, so as to reduce the effect of random errors in the nearfield
measurements, are:-

- that in general the positional errors are the major factor
contributing to the overall errors,

- that in general the larger the number of significant
nearfield measurements the more accurate the resulting
farfield prediction will be,

- that nearfield measurements should only be made over
regions where the nesrfield deterministic amplitude is
significant,

~ thatthe greatest nearfield phase accuracy should be in
those regions where the nearfield deterministic amplitude
is greatest.
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