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I. INTRODUCTION

 

Normally when discussing the performance of passive sonar arrays and
array processors, consideration is given to the case of a point source at
infinity and attention is paid to the effects of various noise fields on sonar
performance. However, a paper by Cox (ref I) discussed the reduction in array
gain of large arrays due to lack of signal coherence across the array. In his
paper the signal coherence was considered to decay exponentially with sensor
separation. A later paper by Green (ref 2) extended-the work of Cox to
include a linear decay of signal coherence.« In both these-papers the cause of
the decay in signal coherence was assumed to be due to complexities in the
propagation process.

In this paper the effect of the decay of signal coherence with increas—
ing sensor separation is also considered. However the decay is here not
assumed to be due to the propagation process, which certainly will be impor-
tant, but due to a quite fundamental limit; that of the finite size of real
sources. It will be shown in this paper that under many conditions of practi-
cal interest large reductions in the array gain of large arrays can be caused
due solely to the finite source size.

The first part of this_paper describes simple mathematical models of
both "sum-square" and "cross-correlation” array processors.' Then follows the
calculations of the spatial correlation function of the radiated field of a
finite source. The resulting spatial correlation function is used with the
above models to evaluate the reduction in array performance in each case.

II.” vsom MODELS

 

Cross-Correlation'sonar______________._____

The system modelled consists of two half arrays of equi-spaced omni-
directional hydrophones each with the same constant frequency.response. The
hydrophone outputs are first multiplied with the shading.weights and then
delayed by appropriate steering delays and finally summed to give-the half
array outputs. These two half array outputs are then cross-correlated and
the normalised correlation coefficient for zero time delay found as a function
of steering angle.

The output of the half array 'A' may be written as,

N .

fA(t) = :5: an fn(t - (n - l)6) " " ’ (1)

n=1

where fn(t) is the hydrophone output, (n 4 l)6 the steering delay and an the

shading weight of the nth hydrophone. The output of half array '3' may
similarly be given as,



   

-80-

ram = Z bm fm(t - (m — 1).; - 5') (2)

where fm(t) is the hydrophone output 0m - I)6 + 6' the steering delay and bm
the shading weight of the Inth hydrophone. It should be noted that the sub-
scripts n, p, q and the variable an will be associated with half array 'A'

only, and the subscripts m, r, s and the variable hm with half array '8'.

Now the output of the cross correlator is by definition

1km

RAB“) = / fA(t) fB(t + 1) dt (3)
—a:

where the value for T = o is required. Substituting for the half array out-
puts from relations I and 2 into relation 3 gives,

N M . . .

anon) = Z Z an hm an -{(n — my: y- 6‘} (4)
n=l m=l

where an {(n - m)6 - 5'} is the cross-correlation function between the

acoustic field at the nth hydrophone in the ha1f_array 'Ai and the mth hydro-
phone in the half array '3'. Thus the output of the sonar, the normalised
cross-correlation coefficient, may be written,‘ '

. R (o)

DAB“) = —M——' ' (5)
{RAAioS RBBio) I

where RAA(0) and RBB(0) are the mean square outputs of the half arrays 'A‘ and

'B' respectively.

Relation 5 is the expression that is used below to analyse the effect of
finite sources on the performance of a crossrcorrelation sonar. It is impor-
tant to note that in the case of a cross-correlation sonar, if there is no
correlation of the acoustic field between half arrays the'correlation coeffi-
cient will be zero even though the acoustic field may be correlated between
hydrophones within a half array. '

'Sum-Sguare" Sonar

In the case of a sum-square sonar the output is the mean square power
which may be written as,

N N

RM(o) = Z an a“I Rm' {(n - In)!” (6)
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where Rum {(n - m)6} in this case is the cross correlation function between

the acoustic field at the nth and mth hydrophones in the same array. In this
case there will be a finite output even if the acoustic field is uncorrelated
between individual hydrophones due to the auto correlation terms.

The performance of such a sonar is conveniently discussed in terms of
the Array Gain given as '

 

N N

S 2a a R {(n - m)5}/o

UNZ RAAS (°) ; g n m m SAG = —' = (7)
"s2 RAAN (°) N N N 2Z Z at1 am Rm {(n - “INN/oN

n=l I

where the superscripts S and N denote the appropriate factors for signal only
. . . 2 . .or neise only respectively and a 1s_the variance.

System performance with perfectly coherent signals

As the purpose of this paper is to discuss the effects of lack of signal
coherence rather than the effects of the noise structure, attention is given
to the array gain in the presence of noise which is spatially uncorrelated and
also is uncorrelated with the signal.

In the case of the sum-square sonarthe signal component will give rise
to values of the signal crossrcorrelation function,'in the steering direction,

of E, the signal mean square power, ie

S for all n,m.
' S
an {(n m)6}

The noise, being uncorrelated, will only have non zero values for n = m, ie

Rgm {(n - m)6} = fi only for n = m

Q else,

where E is the mean square noise power. The array gain is then from relation 7
and assuming unity for all the shading weights,

2
|

M
z

m
l

AG=—N———=N "'(8')

E213
n=|

Thus the signal to noise ratio has improved by a factor N, by using an array
of N elements.  
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In the case of the cross correlation sonar consideration is given to
the normalised cross correlation coefficient for zero time delay givenby
relation 5. Using the same ideal signal and uncorrelated noise as above
gives, for half arrays of equal numbers of elements (N), the normalised
correlation coefficient as,

§ .
D (0) = —- - (9)
M {E + film

III. SPATIAL CORRELATION FUNCTION OF FINITE 'SOURCESmm

In the preceding sections the signal field has been assumed to be
spatially correlated, independent of the hydrophone spacing; that is a point
source at infinity. In practice most sources of interest in the sonar con-
text are neither small nor at infinity. In this section the spatial correla-
tion function of the radiated field of such finite sized sources is derived,
and evaluated for the special case of a linear uncorrelated source.

The fundamental relationship between the spatial cross-correlation
function of the radiated field of a finite partially correlated source and
the surface cross power spectrum may be written as, (references 3, lo)

R(X ,X ,T) =
_9 _q

| 3G 3G* inn'2? ~/fl//‘s(§r1£sxw) E (Epszryu) E (zqsz‘i’w) d5: dlts e d“

' to S S -‘ '

(10)

where S(:_:r,lc_s,w) is the cross power spectrum of the surface pressure field on

the surface S enclosing the source, 5: and is are surface points, R(l(p,_Xq,‘r)

is the- cross correlation function of the radiated field, 5? and X are

exterior points and 3—:( ) is the normal derivative of the Green's function

for Dirichlet boundary conditions on the surface S.

In the case of a source that gives rise to a spatially uncorrelated sur-
face pressure field relation l0 becomes on integrating with respect to 5,

R(X ,)_{q,1') =

-p ,

1 3G 36* 'fl /]S(§,£,w) E- (fipéw) 5 (large) d5 emf“ dm (II)

(I)

In cases of practical interest the farfield approximations for the
Green's functions can be used and assuming a uniform auto power spectrum
given by

S(§,§,m) = S(tu) for -L < x < L

0 else (12)
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and a uniform frequency spectrum given by,

3(a) = g for w] < [ml < oz (13)

= 0 else

gives the spatial correlation function of the farfield of an uncorrelated
broadband line source as,

R(x x 0) i— [m—2 {j [Mum] + ' [Ma - s]}]m2 (14)p' q’ aflszzcz a l 31 u

where a = (Xp - Xq)L cos Blzc, B = (x: - x:)/2zc. XP and Xq lie on the
measurement-plane which makes an angle 9 with the source planeand z is the per-
pendicular distance of the origin of the source plane coordinate from the
measurement plane origin. In the narrow band approximation, relation 13 for
the spatial correlation function may be written,

 

_ L § w cos m 8 sin m aR(xp,xq,0) - 4 2 2 _ ('5)

It is this narrow band approximation for the spatial correlation function of
the radiated farfield of a spatially uncorrelated line source of uniform inten-
sity that is used below together with the sonar models described in Section II
to determine the effect of such signal fields on sonar performance.

The cosine term in relation l5 is due to the basic curvature of the wave-
front and is independent of the size of the source and for hydrophones symmetri-
cally placed about the normal from the'array to the source is unity. The sine
term is dependent on the size and range of the source and it is clear from
relation 15 that for small sources at large distances the field will be well
correlated even for large hydrophone'separations.' ' '

It will prove convenient in the following to use the correlation length
A, defined as the separation corresponding to the first zero of the spatial
correlation function, as a.measure of the extent of the region.of high correla-
tion. This may be written for small 8 in the narrowband approximation as,

A = :_E_E_E__ . (15)
w Lcos 8

IV. EFFECT or FINITE souncss

In this section the spatial correlation function of the radiated field
of a finite uncorrelated source is used to evaluate the degradation of sonar
performance. The actual spatial correlation function used is for the narrowh
band approximation. In practice this will suffice for quite wide bandwidths
and even for very large bandwidths the general trend of results given below
still hold although if required the exact broadband correlation function given
by relation 14 may be used. In general the wider the bandwidth the shorter
the correlation length.
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Sum-Sguare Sonar

The effect of the finite source on the array gain of a sum square sonar
array processor can be seen from relation 8 using the above correlation func-
tion. It is then clear that for hydrophone separations small compared to the
correlation length the ideal array gain will be maintained. However for
separations greater than the correlation length the correlation function will
have only small values; Apnroximating the correlation function by,

Rim {(n --m)6} -= 0 for (n - m) d > A/Z

= E for (n - n0 d s A/2

allows the Array Gain using relation 7 to be written for uncorrelated noise,

[mm + I) - k(k +1)] - A A
AC = ————N—— where. 1: 1-2—5 and Nzfi .

Thus an estimate of the reduction in array gain for large arrays may be written
as,

. A _ Areduction - fi , for Nd» 4/2 and 7;» l. I (17)

Thus increasing.the.length of a sum square array beyond the length of
high correlation (A/2) gives no improvement in array gain.

Cross Correlation Sonar

In the case of the cross correlation sonar consideration is given to the
effect on the normalised cross correlation coefficient pAB(o) given by rela-

tion 5. The dominating factor in this expression is the numerator, namely,

N M '

sum) = Z Z anmemHn-m) 5—6'}. (5)
n=1 m=l

Thus for contiguous half arrays the reduction in the correlation coefficient
RAB(0) due to the finite source size will be worse than the sum square array

processor as there will be fewer small_hydrophone separations contributing.

For large contiguous cross correlation arrays, where the half array
length is greater than the half correlation length, the reduction in the cross
correlation RAB(0) due to a finite source compared with the ideal value can be

written in a similar manner to relation l7 as,

2
A 2 , for Nd» A/2 and zA—d» l (13)

 

reduction ~
8(Nd)

where in this case Nd is the half array length. This then allows the norma-
lised cross correlation coefficient to be written, from relations 5, l7 and
18 for uncorrelated noise and half arrays of N elements, as,  
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k(k + I) 5 A AD (0) = —————_—_—- whereK=—— and Nd3—.
AB 2{[N(2k+ I) -k(k+ 1)] sum} 2“ Z

V . CONCLUSIONS .

In this paper the effect of the finite sire of sources on the performance
of sum square and cross correlation passive sonars has been quantified and dis-
cussed. It is clear that the effects of limited signal coherence due to finite
source size are in reality as important to consider for large arrays as the
effects of real noise fields, and that serious over estimates of sonar perfor-
mance may be made by only considering ideal signal fields.
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