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INTRODUCTION

Currently the most computationally useful speech pattern modelling paradigm for
automatic speech recognition is based on hidden Markov models (HMMs).
Commercial recognisers which exploit these techniques already exist and have
been shown to outperform recognisers based on more traditional template matching
methods [1], [2]. There is little doubt that this trend will continue and that
a significant nuaber of commercial systems in the near future will be based on
HMM technology. ’

This success can be attributed to several factors. HMs are a statiastical
formalism for modelling time-varying sequences which evolva through a set of
quasi-stationary states of varying duration. As such they provide a wsgeful
framework for modelling temporal and spectral structure in speech patterns, -
Although it is clear that several properties of HMMs, such as their treatment of
non-stationary patterns and their 'memoryless' nature, are inadequate in the
full context of speech pattern modelling, these shortcomings are offset to some
degree by the availability of mathematically sound and computationally efficient
algorithms for automatic model parameter estimation from data and for pattern
clasgification.

Thia paper reports on the results of a programme of comparative experiments
using HMMs conducted at the Speech Research Unit, RSRE, between 1 Septesber 1985
and 31 August 1986. The experiments examine the effect on the performance of a
speaker dependent isclated digit recogniser of varying each of the principal
parameters and algorithms of a particular class of HMM word-models.

HIDDEN MARKOV MODELS

The underlying assumption in the HMM approach to speech recognition is that a
spesch signal can be mocdelled as a probabilistic fumction of a finfte-gtate
Markov process. Given some representation Y =¥Y{I),...,¥(T) of an utterance nas
a sequence of vectors in d-dimensional space R, it is assumed that there is an
underlying ¥ state Markov chain X = X(1),...,X{(T} such that ¥ is & random
function of X. Intuitively tha state sequence X corresponds to & sequence of
high-level descriptors of the sounds in the utterance and the sequence Y is one
of many possible acoustic realisations of X. The vector ¥(t) should be thought
of as a description of some importent characteristic of the acoustic signal at
time ¢, for example a short-term power spectrum.

The Markov chain X is determined by the number of states N, an initial state
probability vector ¢ = (il, vers lN). and a state-transition probebility matrix 4
- [au: t,1=1,...,N], where, .

&= prod(X(1} = GJJ. J=1,...,0,

Proc.l.O.A, Vol 8 Part 7(1388) 29




Proceedings of The Institute of Acoustics

EXPERIMENTS IN SPEAKER-DEPENDENT ISOLATED DIGIT RECOGNITION

alj = prob{X{t) = aJ | X(t-1) = at), i, = 1,...;N.

The pair M = (1,4) 1s sufficient to characterise the statisﬁical properties of
the Markov chain X. M is called the umderlying Markov model.

It remains to specify the relationship between the observed sequence Y and the
hidden atate sequence X. This is done by Ildentifying each state g, with a
probability density function (pdf} bi' such that

b,(v) = prob(¥(t) = v | X(t) = 8,) ve &%, ta1,....N.

The hidden Markov model HMM = (f;A;bl,...,DN} completely determines the
stochastic process Y,

In the class of recogniser considered here a separate HMM is used to model each
word 1in the vocabulary. Recognition is performed by comparing an unknown word
with every HMM and assigning it to the class of the model which fits it most
closely, in some sense. This raises two issues. First, how can an 'appropriate

HMM' be constructed for a given word? Second, what wmeasure should be used to -

determine how well a given HMM fits & particular unknown word-pattern?

All current solutions to the first problem involve two stages., The first stage,
inttial parameter estimation, consists of estimating the structure of an
appropriate word-model. This estimate might be derived from a set of
representative word-patterns, compiled using prior knowledge about the
high-level structure of the word, or even chosen randomly. It is important not
to underestimate the importance of thia atage since essential properties of the
final HMM, 4including the number of states and restrictions on the topology of
the underlying Markov model, are fixed at this point.

The second stage is parameter reestimetion. The paraseters of the HMM are
iteratively reestimated such that after each iteration the HMM is more
representative of a set of training word-patterns, according to some criterion.
Typically one of two closely related algorithms is used. The forward-baclasard
aigorithm increases the probability of the set of training patterns, conditioned
on the HMM, at each iteration. An alternative is the Viterb{ reestimation
algortthn, which at each itaeration increases the joint probability of the set of
training patterns and the wmost probable underlying state sequence, given the
HMM. At present these algorithms have only been validated for HMMs with
particular classes of atate output pdf b,. These are the elliptically symumetric
pdfs studied by Liporace [3]. which include finite mixtures of wultivariate
gaussian pdfs, and "discrete" pdfe [4].

Once a H'M has been obtained for each word, an unknown word-pattern is
classified in one of two ways. Either the probability of the word-pattern
conditioned on each HMM is computed and the word-pattern is classified according
to a maximum ifkelthood rule, or for each HMM the Viterbi algorithm is used to
compute the Jjoint probability of the word pattern and the most probable state
sequence, and the pattern is classified according to this criterion,

In summary, in order to define an isolated word recognition system based on HMM
word-models, the following issues must be addressed:
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= the nunber of ptatas in the underlying Markov source model,
= the topology of the underlying Markov source model,

= the class of the state output probability density functions,
= the amount of training data,

= the initial model parameter estimation algorithm,

- the model parameter reestimation algorithm, and

= the recognition algorithm.

The experiments reported below investigate the implications of particular
choices of these parsmeters for recogniser performance.

SCOPE OF-THE EXPERIMENTS

Speach Data

The speech data which was used for the experiments is a subset of the database
described in [5]. In [5] 40 speakers are ranked according to the expected
parformance of a typical speaker-dependent isclated word rvecogniser on their
speech. Each speaker in the study spoke 400 isclated digits (RSG10 random digit
tables SB, 1A, 1B and IC [6]), of which 100 were used for reference selection
and the remaining 300 as test data. For the present experiments it was decided
that only the speech of the 20 least consistent speakers from [{5] would be used.
For each speaker 100 digits were used as test data and subseta of the remaining
300 for training., The number of examples of each digit used for training was
varied between 2 and 30 in the experiments. The data was digitised and
preprocessed as described in [5].

HMM structure : i
The experiments were restricted to left-right HMMs and Gaussian sgtates with

diagonal covariance matrices. The number of states in the HMM was varied
botween 2 and 20.

Three types of topelogy were considered: TlI, T2 and T3. Figure 1 shows each of
the topologies in the case of a E-state model. 71 is the minimal left-right
topology which allows only transitions from state &, to states &, and 8.1 2
includes all of the transitions permitted in Il pius r.ransitiol’m fron a{at.a 8
to 8, ,. Topology T3 is @ full left-right topology in which transitions frob
ar.atg 3 { to state g, are allowed whenever { <« J. These topologies are defined
during “initial paraﬂeter estimation and refined during reestimation. In
particular, transitions which are initially permitted may vanish during the
parameter reestimation process. . :

Gauasian pdfs with diagonal covariance matrix are the simplest mesbers of the
class of continucus states considered by Liporace [3]). Although they are not
optimal [8], they avoid the need for computaticnally expensive matrix inversion,
wvhich is an important practical consideration. Furthermore, the application of
the Viterbi recogniticn algorithm to this type of HMM is directly related to
dynamie time-warping (DTW) using a weighted squared Euclidean distance measure
[7], and soc compariscn with the results obtained using DIW gives a direct
measure of the power of the formal HMM methods.
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Figure 1: Topologtes Il {—), T2 (— &---) and TS (— ,~~-&. ... ).

Initial HMM parameter estimation .
In all of the experiments, initial HMM parameters were derived directly from the
training data. Four alternative algorithms were considered:

IPE1: Composite reference, optimal segmentation,
IPE2: Composite reference, uniform segmentation,
IPE3: Cptimal segmentation of individual word-patterns,
IPE4: Uniform segmantation of individual word-patterns.

IPE1 (Composite reference, optimal segmentation). This 1s a three stage
algorithm. In the first etage all patterns representing & given word are
combined to form a composite, or aversge, reference. The composite reference is
then divided into N segments, Finally the segments are used to define initiel
estimates of the HMM state parameters.

Initially the first example of the word is chosen as the composite. Subgsequent
examples are aligned with the prototype composite, using a standard asymmetric
DIW algorithm, and a new composite is obtained by averaging the prototype with
the new word-pattern along the optiosl time-registration path. The average 1is
weighted to account for the number of words which have contributed to the
composite. The DIW algorithm is defined by the recursive equation:

D(i,4} = mtn { D(i-1,4-z) + d(t.4) } (=-0,1,2),

where { and § index the frames of the new word-pattern and copposite
respectively and 4(1,J) is the euclidean distance between the {th frame of the
word-pattern and the fth freme of the composite. The endpoints of the optizal
time-registration path are constrained so that the first and last vectors in the
:omposite are aligned with the first and last vectors in the individual
word-pattern respectively.

The composite reference is then partitioned into N segments such that the fit,
summed over all segments, betwsen the vectors in the segment and & sultivariate
Gaussian pdf with the segment wean vector and dJdiegonal covariance matrix is
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maximised. This uses the optimal dynamic programeing method described in [9],

The mean vector and covariance matrix of the {th segment ere used as inftiasl
estimates for the corresponding parameters of the ith state of the HMM. The
probability of a transition from state g, to itself is set so that the expacted
duration of state &, is the average nuﬁber Dt of vectors per word-pattern
contributing to the {th segment:

a. " (Di-l)jnt (t=1,...,N),

IPE2 (COmEgsite reference, uniform segmwentation). In IPE2 a composite is formed
a3 in IPE]l and then partitioned uniformly into N equally long segments.

IPES (Optimel segmentation of individual word-patterns). In IPE3 each pattern
representing a given word in the training set is partitioned inte N gegments
according to the optimal segmentation method described under IPEI. The mean
vector and covariance matrix, computed over the {th segments in all of the
segmented word-patterns, are used as initial estimates for the corresponding
parametera of the ith state of the HMM. The probability of a transition from
state { to itself is set g0 that the expected duration of state 5. is equal to
the average length of the ith segment in the individual segmented pgtterns.

IPE4 (Uniform segmentation of individual word-patterns). IPE¢ 1is similar to

IPE3, except that each pattern is partiticned uniformly into ¥ equally long
seguments.

Parametef reegtimation and recognition
The forward-backward algorithm and maxioum likelihpod classification, and

Viterbi paremeter reeatimation and classification are both considered in the
experiments, Unless otherwise stated the reestimation process was stopped
either when the maxioum permitted number of iterations (15) was reached, or the
improvement after consecutive iterations fell below some fixed threshold (0.1}.

RESULTS

It is not possible to present the results of all of the experiments in the space
which is availeble and only those results which are considered toc be of
paerticular interest are discussed. The reader is refered to [10] for details.
A subset of the results of the experiments is shown in figures 2 to 4. Figures
2 and 3 show results of experiments using initial parazeter estimation algorithm
IPEl, parameter reestimation by the forward-backward algorithm and maxipum
likelihood classification. The initial underlying Markov model topology 1is T3
in figure 2 and T1 in figure 3. Figure U shows the effect of different numbers
of iterations of the forward-backward reestimation algorithm for the four
initial parameter estimation algorithms in the study.

Number of atates

Figure 2a shows recognition accuracy increasing with number of states
independently of the size of the training set., This result is unexpected from
the viewpoint of statistical parameter estimation. Intuitively as the numbar of
states (and hence model parameters) is increased, more data 1s required for
robust parameter estimation, Hence if the amount of training data i1is kept
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constant and the size of the model is increased one would expect an eventual
degradation in performance. The results suggest that this 1s offset by the
ability of a HMM with a large number of states to model non-stationary regiocns
vore effectively.

The increase in error-rate as the number of states epproaches 20 in figure 3a
is due to the restrictive topology of TI and simply reflects the necessity of
being able to 'skip' states in long models.

Size of training set ‘

As one would expect, figures 2b and 3b show a general increase in performance as
the amount of training data increases. This effect is most pronounced for HMMs
with a large number of states, indicating that these are better able to take
advantage of more genercus amounts of training data.

Model topology

A comparison of figures 2e and 3a shows that the results for topologies I3 and
71 are comparable for models with up to 10 states. For longer models topology
T3 performs significantly better because of its ability to 'skip' states. This
suggests that for short nodels a full left-right topology reduces to a more
resticted form, like T! or T2, during reestimation, but that a more flexible
topology is needed to take full advantage of a longer model.

This 1ias confirmed by closer inspection of reestimated state transition
probebility matrices of HMMs with topology T3. In the cagse of speaker MW, for
exampla, the percentage of states in the reestimated models which have non-zero
probabilities assigned to transitions other than those permitted in TI is 0x,
12.5% and 62% for 4, 8 and 20 state models respectively. All transitions with
non-zerc reestimated probability in the 8 atate wodels are persitted under
topology T2, but this is not the case for the 20 state models in which non-zero
probabilities were assigned to transitions which 'skip' two or more states.

Initial parameter estimation

Figure ) shows percentage error as a function of number of iterations of the
forward-backward algorithm for all four initial parameter estimation algorithwms.
The underlying Markov model has B states and topology T2.

Algorithm IPE1 is least affected by reestimation: the error rate for IPEl is
approximately 1% irrespective of the number of iterations of the
forward-backward algorithm. This suggests that initial models def'ined by IPEl
are close to local optima and hence not significantly changed by reestimation.
The remaining algorithms all show an improvement after application of the
forward-backward algorithm. For IPE2 the error rate is reduced from 3X to 0.4%
after 2 iterations and for IPE3 and IPE4 the reduction is from 1.25% and 0.7%
respectively to 0.2% after B iterations., After reestimation the perforumance of
all three aslgorithms is significently better than that of IPEL.

The most surprising feature of the results 18 the superior performance, with or
without parameter reestimation, of IPE4 which is the least sophisticated of the
four algorithms. The success of both IPE3 and IPE4 relative to the two
algorithns which use a composite reference suggests that order-dependence in the
construction of the composite is a seriocus problem, Alternative composite
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reference algorithms are currently under consideration.

The wide variation in the performances of the algorithms reinforces the
importance of reliable initial parameter estimation.

Reestimation and recognition algorithma

Experiments using the Viterbi reestimation and recognition algorithams are not
yet completed. flesults to date on models with up to 8 states have revealed no
significant differences from the corresponding results for the Fforward-backward
algorithn and paximum likelihood clagsification. Results on the Viterbi
algorithm will be reported in full in [10].

CONCLUSIONS

This paper has presented a set of results which demonstrate the effect of
particular algorithoic and parametric choices on the performance of a HMM based
isolated word recogniser. Meny of the results give quantitative evidence Cfor
expacted effects; however there are also results, such as the relacionghip
batween model topology and model size and the performance of the initial
parameter eostimation algorithms, which are less predictable. The implications
of these results will be investigated in Future experiments.
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