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INTRODUCI'ION

Currently the moat computationally useful speech pattern modelling paradigm for
automatic speech recognition is based on hidden Harkov models (We).
Commercial recomisers which exploit these techniques already exist and have
been shown to outperform recomisers based on more traditional template matdxing
methods [1]. [2]. There is little doubt that this trend will continue and that
a significant number of commercial systems in the near future will be based on
Hm technology. '

This success can be attributed to several factors. We are a statistical
formalism for modelling time-varying sequences which evolve through a set of
quasi-stationary states of varying duration. As such they provide a useful
framework for modelling temporal and spectral structure in speech patterns.
Although it is clear that several properties of HMMs. such as their treatment of
non-stationary patterns and their 'memoryless' nature. are inadequate in the
full context of speech pattern modelling, these shortcomings are offset to some
degree by the availability of mathematically sound and computationally efficient
algorithm for automatic model parameter estimation from data and for pattern
classification.

This paper reports on the results of a programme of comparative experiments
using We conducted at the Speech Research Unit. RSRB. between 1 September 1985
and 31 August 1986. The experiments examine the effect on the performance of a
speaker dependent isolated digit recogniser of varying each of the principal
parameters and algorithms of a particular class of Hull word-models.

HIDDEN HARKOV KOBE—S

The underlying assumptionin the m approach to speech recognition is that a
speech signal can be modelled as a probabilistic function of a finite-state
Harlow process. Given some representation 1' -I' ).....Y(l') of an utterance as
a sequence of vectors in d-dimensional space . it is assumed that there is an
underlying N state Markov chain X - x(z),...,x(r) such that Y is a random
function of x. lntuitively the state sequence X corresponds to a sequence of
high-level descriptors of the sounds in the utterance and the sequence Y is one
of many possible acoustic realisations of x. The vector Y(t) should be thought
of as a description of some important characteristic of the acoustic signal at
time t. for example a short-term power spectrum.

The Markov chain x is determined by the number of states N. an initial state
probability vector 1 - (11.....iN). and a state-transition probability matrix A
- (cu: i,.1-1,...,N]. where.

(J - prob(X(1) ' '1): .1'1.- .N.
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a” - prob(X(t) - sjl x(:-1) - at), 1.1 - 1,...,N.

The pair l'l - (1.4) is sufficient to characterise the statistical properties of
the Markov chain X. H is called the underlying Markov model.

It remains to specify the relationship between the observed sequenceY and the

hidden state sequence X. This is done by identifying each state at with a
probability density function (pdf) bi. such that

stay) - prab(Y(:) - u | X(t) - at) v 5 Rd, 1-1,...,N.

The hidden Markov model HHH -
stochastic process Y.

(i;A;b1. . . . ,bN) completely determines the

In the class of recogniser considered here a separate HEM is used to model each
word in the vocabulary. Recognition is performed by comparing an unknown word
with every HMM and assigning it to the class of the model which fits it most
closely. in some sense. This raises two issues. First. how can an 'appropriate

IMM' 'be constructed for a given word? Second. what measure should be used to
determine how well a given HMM fits a particular unknown word-pattern?

All current solutions to the first problem involve two stages.

initial parameter estimation. consists of estimating the structure of an

appropriate word-model. This estimate might be derived from a set of
representative word-patterns. compiled using prior knowledge about the

high-level structure of the word. or even chosen randomly. It is important not
to underestimate the importance of this stage since essential properties of the
final m. including the number of states and restrictions on the topology of

the underlying Markov model. are fixed at this point.

The first stage.

The second stage is parameter reestimatian. The parameters of the film are
iteratively reestimated such that after each iteration the mm is more

representative of a set of training word-patterns. according to some criterion.

Typically one of two closely related algorithms is used. The fomrd-backuord

algorithm increases the probability of the set of training patterns. conditioned

on the HMM. at each iteration. An alternative is the Viterbi reestimotion

algorithm, which at each iteration increases the joint probability of the set of

training patterns and the most probable underlying state sequence. given the

HM. At present these algorithms have only been validated for mm with

particular classes of state output pdf 27 . These are the elliptically symmetric

pdfs studied by Liporace [3]. which include finite mixtures of multivariate

gausaian pdfs. and "discrete" pdfs [16].

Once 3 HM! has been obtained for each word. an unknown word-pattern is

classified in one of two ways. Either the probability of the word-pattern

conditioned on each HIM is computed and the word-pattern is classified according

to a maximum likelihood rule. or‘for each HMH the Viterbi algorithm is used to

compute the Joint probability of the word pattern and the most probable state

sequence. and the pattern is classified according to this criterion.

In summary. in order to define an isolated word recognition system based on HMM

word-models. the following issues must beaddressed:
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- the number of states in the underlying Markov source model.
- the topology of the underlying Ilarkev source model.
- the class of the state output probability density functions.
- the amount of training data.
- the initial model parameter estimation algorithm.
- the model parameter reastimation algorithm. and
- the racomition algorithm.

The experiments reported below investigate the implications of particular
choices of these parameters for recomiser performance.

SCOPE OF» THE EXPERIMENTS

fich Data
The speech data which was used for the experiments is a subset of the database
described in [5]. In [5] ‘00 speakers are ranked according to the expected
performance of a typical speaker-dependent isolated word recomiser on their
speech. Each speaker in the study spoke "00 isolated digits (115610 random digit
tables SB. 1A. 13 and 1c [6]). of which 100 were used for reference selection
and the remaining 300 as test data. For the present experiments it was decided
that only the speech of the 20 least consistent speakers from [5] would be used.
For each speaker 100 digits were used as test data and subsets of the remaining
300 for training. The number of examples of each digit used for training was
varied between 2 and 30 in the experiments. The data was digitised and
preprocessed as described in [5].

HM! structure
The experiments were restricted to left-riytt mu; and Gaussian states with
diagonal covariance matrices. The number of states in the HMM was varied
between 2 and 20.

Three types of topology were considered: 1'1. 1'2 and 1‘3.
the topologies in the case of a 6-state model. 1'1 is the minimal left-right
topology which allows only transitions from state a to states a and a“ . 1'2
includes all of the transitions permitted in n plus transitiohe from state a
to a ' . Topology 1'3 is a full left-right topology in which transitions froth
stati t to state a are allowed whenever i < .1. These topologies are defined
during initial paraéeter estimation and refined during reestimation. In
particular. transitions which are initially permitted may vanish duringthe
parameter reestimation process. ‘

Figure 1 show each of

Gaussian pdi‘a with diagonal covariance astrix are the simplest members of the
class of continuous states considered by Liporace [3]. Althcmfll they are not
optimal [8]. they avoid the need for computationally expensive matrix inversion.
which is an important practical consideration. Furthermore. the application of

the Viterbi recognition algorithm to this type of Hm is directly related to
dynamic time-warping (DTH) using aweighted squared Euclidean distance measure
[7], and so comparison with the results obtained using I?” gives a direct
measure of the power ol‘ the formal 1W methods.
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Figure 1.- 1mm“. r1(—). 1: (— an.) and n (_ "-4. ...).

Initial m parameter estimation

In all of the experiments. initial HIM parameters were derived directly from the

training data. Four alternative algorithms were considered:

031: Composite reference. optimal segmentation.

IP82: Composite reference. uniform segmentation.

IP25: Optimal segmentation of individual word-patterns.

1PM: Uniform segmentation of individual word-patterns.

1PM (Comsite reference. ogtimal segmentation). This is a three stage

algorithm. In the first stage all patterns representing a given vord are

combined to form a composite. or average. reference. The composite reference is

then divided into N segments. Finally the segments are used to define initial

estimates of the m state parameters.

Initially the first example of the word is chosen as the composite. Subsequent

examples are aligned with the prototype composite. using a standard asymmetric

m algorithm. and a new composite is obtained by averaging the prototype with

the new lord-pattern along the optimal time-registration path. The average is

weighted to account for the number of words vihich have contributed to the

composite. The In“ algorithm is defined by the recursive equation:

D(t,.1) - min {DH-1,11) o d(t.J) I (2-0.1,2),

more i and 1 index the frames of the new word-pattern and composite

respectively and d(i.J) is the euclidean distance between the 1th frame of the

lord-pattern and the 1th frame of the composite. The endpoints of the optimal

tile-registration path are constrained so that the first and last vectors in the

:alpomite are aligned with the first and last vectors in the individual.

nerd-pattern respectively.

The composite reference is than partitioned into N segments such that the fit.

summed over all segments. between the vectors in the segment and a multivariate

Gaussian pdf with the segment mean vector and diagonal covariance matrix is
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maximised. This uses the optimal dynamic programming method described in [9],

The mean vector and covariance matrix of the ith segment are used as initial
estimates for the corresponding parameters of the ith state of the HMM. The
probability of a transition from state a to itself is set so that the expected
duration of state at is the average number Dt of vectors per word-pattern
contributing to the ith segment:

a“ I (Di-HID! (t-1,...,N).

IP32 (Comes-its reference, uniform segmentation). In [PI-J2 a composite is formed
as in IPEI and then partitioned uniformly into N equally long segments.

IP25 (mtimal aem'ntstion of individual lord-patterns). In IP55 each pattern
representing a given word in the training set is partitioned into N segments
according to the optimal segmentation method described under IP31. The mean
vector and covariance matrix. computed over the ith segments in all of the
segmented word-patterns. are used as initial estimates for the corresponding
parameters of the ith state of the m. The probability of a transition from
state i to itself is set so that the expected duration of state a is equal to
the average length of the 1th segment in the individual segmented pitterns.

IP34 (Uniform semntation of individual word-patterns). IP54 is similar to
IP23. except that each pattern is partitioned uniformly into N equally long
segments.

Parameter reestimation and recoggition
The forward-backward algorithm and maximum likelihood classification. and
Viterbi parameter reestimation and classification are both considered in the
experiments. Unless otherwise stated the reestimation process was stopped
either when the maximum permitted number of iterations (15) was reached. or the
improvement after consecutive iterations fell below some fixed threshold (0.1).

RESULTS

It is not possible to present the results of all of the experiments in the space
which is available and only those results which are considered to be of
particular interest are discussed. The reader is refered to [10] for details.
A subset of the results of the experiments is shown in figures 2 to 1|. Figures
2 and 3 show results of experiments using initial parameter estimation algorithm
IP31. parameter reestimation by the forward-backward algorithm and maximum
likelihood classification. The initial underlying Markov model topology is Is
in figure 2 and T1 in figure 3. Figure 14 shows the effect of different numbers
of iterations of the fomard-backvsrd reestimation algorithm for the four
initial parameter estimation algorithms in the study.

Number of states
Figure 2a shows recognition accuracy increasing with number of states
independently of the size ofthe training set. This result is unexpected from
the viewpoint of statistical parameter estimation. Intuitively as the number of
states (and hence model parameters) is increased. more data is required for
robust parameter estimation. Hence if the amount of training data is kept

MDA.Vol 0 Pan 7(1336) 295

  



Proceedings of The Institute of Acoustics

mm IN SPENCER-DEPEle ISOLATED DIOIT RECOGNITIM

constant and the size of the model is increased one would expect an eventual

degradation in performance. The results suggest that this is offset by the

ability of a HMM with a large number of states to model non-stationary regions

more effectively.

The increase in error-rate as the number of states approaches 20 in figure 3a

is due to the restrictive topology of 1‘1 and simply reflects the necessity of

being able to 'skip' states in long models.

Site of training set
As one would expect. figures 2b and 3b show a general increase in performance as

the amount of training date increases. This effect is most pronounced for Me

with a large number of states. indicating that these are better able to take

advantage of more generous mounts of training data.

Model region
A comparison of figures 2a and 3a shows that the results for topologies TS and

1'1 are comparable for models with up to lO'states. For longer models topology

1'5 performs significantly better because of its ability to 'skip' states. This

suggests that for short models a full left-right topology reduces to a more

resticted form. like TI or T2. during reestimation. but that a more flexible

topology is needed to take full advantage of a longer model.

This is confirmed by closer inspection of reestimated state transition

probability matrices of HMMs with topology 1'3. In the case of speaker MN. for

example. the percentage of states in the reestimated models which have non-zero

probabilities assigned to transitions other than those permitted in 1'1 is OX.

12.51 and 62% for 4. 8 and 20 state models respectively. All transitions with

non-zero reestimated probability in the 8 state models are permitted under

topology 1'2. but this is not the case for the 20 state models in which non-zero

probabilities were assigned to transitions which 'skip' two or more states.

Initial parameter estimation V
Figure shows percentage error as a function of number of iterations of the

forward-backward algorithm for all four initial parameter estimation algorithms.

The underlying Markov model has 8 states and topology T2.

 
Algorithm IP21 is least affected by reestimation: the error rate for IPEl is

approximately 1% irrespective of the number of iterations of the

forward-backward algorithm. This suggests that initial models defined by IP31

are close to local optima and hence not significantly changed by reestimation.

The remaining algorithms all show an improvement after application of the

forward-backward algorithm. For IP32 the error rate is reduced from 31 to 0.“

after 2 iterations and for IP35 and IP24 the reduction is from 1.251 and 0.71

respectively to 0.21 after 8 iterations. After reastimation the performance of

all three algorithms is significantly better than that of IPEI.

The most surprising feature of the results is the superior performance. with or

without parameter reestimation. of IP24 which is the least sophisticated of the

four algorithms. The success of both IP83 and 1PM relative to the two

algorithms which use a composite reference suggests that order-dependence in the

construction of the composite is a serious problem. Alternative composite
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reference algorithms are currently under consideration.

he wide variation in the performances of the algorithms reinforces the
importance of reliable initial parameter estimation.

Reestimation and recognition algorithms
Experiments using the Viterbi reestimation and recognition algorithms are not
yet completed. Results to date on models with up to 8 states have revealed no
significant differences from the corresponding results for the forward-backward
algorithm and maximum likelihood classification. Results on the Viterbi
algorithm will be reported in full in [10].

CONCLUSIONS

This paper has presented a set of results which demonstrate the effect of
particular algorithmic and parametric choices on the performance of a HMM based
isolated word recogniser. Many of the results give quantitative evidence for
expected effects: however there are also results. such as the relationship
betveen model topology and model size and the performance of the initial
parameter estimation algorithms. uhidx are less predictable. The implications
of these results will be investigated in future experiments.
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Figures 2 and 5: Percentage error as a function a! (a) number of states and (b)

eile of training set (IP21. fomrd-bacluard algorithm. maximum likelihood

classification). Initial topology was 1': in figure 1 and T1 in figure 2.

Figure (a) sham results for 2 (El). 5 (A), 10 (x) and 50 (o) examples of each

digit for training. Figure (1:) shows results for 4 (u). 6 (A). 6 (x) and 20 (o)

state Me.

199 1GB

  
312 h B 15 812 h 3 1B

lTERfiTXONS ITERHTJDNS

Figure 4: Percentage error as a function a! number of iterations of the

forward-Mew algorithm for 1P2! ((a)|]), IP33 ((a)A), IP33 ((b)C|) and 11734

((b)A)-
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