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Exponentially tapered rods can serve as a simplified physical model for tree roots. Based on an
analytical solution for axial waves in a uniform embedded rod, we present a piecewise uniform
formulation for modelling the dynamics of a tapered embedded rod. First, we revisit the uniform
rod solution and discuss its characteristics. The piecewise uniform approach, in which the tapered
rod is approximated as a multi-step structure composed of a number of uniform components, is
presented next. The dynamics of the built-up waveguide are written in terms of propagating waves
that scatter at the junctions. The assumption is made that the surrounding elastic medium has no
effect on the scattering. We conduct a numerical convergence study and verify the accuracy of our
model against an axisymmetric finite element (FE) simulation with perfectly absorbing bound-
aries. Both predictions are in very good agreement except for the low frequency range, where
an assumption regarding the boundary contidions is expected to play a role. Finally, some basic
observations are given in the context of the dynamics of a free tapered rod.
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Introduction

The interest in vibration of embedded structures has typically been motivated by applications
related to infrastructure, such as building foundations, tunnels, or buried pipework. For the former
two examples, the focal points include reduction of vibration transmission from the ground to the
building, or from the tunnel to the ground. For the latter wave radiation is actually found useful for
determining the location of buried pipes and assessing its state. A large number of solutions have
been developed for a vast range of engineering scenarios. However, to our best knowledge, waves in
embedded tapered rods have not been addressed yet.

At first, such structure may seem to be of little practical relevance. However, based on the descrip-
tions given by tree physiologists [1], an embedded, exponentially tapered rod can serve as a good
physical model for a tree root in soil. An insight into the waves in root-like structures is expected
to inform non-destructive root detection from surface vibration measurements. Such technique has
proven to be effective for locating buried water pipes [2].

Some fundamental dynamics of exponentially tapered structures was addressed in our previous
work [3] where we established a method for estimating wavenumbers in tapered rods from five eq-
uispaced vibration responses. In this paper, we focus on the effect of the surrounding medium on
propagating waves. Our interest is confined to descriptions originating from analytical formulations.

There is a relatively small number of publications addressing specifically axial waves in embedded
rods and all of them treat uniform rods only. Toki and Takada [4]] formulated equations for both
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axial and bending strains in underground tubular structures aiming to inform earthquake-resistant
design of buried infrastructure. Their predictions were further refined and extended by Parnes and
his collaborators [55, 16, [7]. Ground surface response to waves propagating along a buried pipe was
analysed by Jette and Parker [8]], and more recently by [9, (10, 11] where the internal fluid and various
coupling conditions between the pipe and the soil were analysed. An experimental investigation into
waves in a pipe buried in sand was also published recently [12]].

To our best knowledge, no description of the dynamics of embedded tapered structures is avail-
able. In this paper we address this topic, starting from the uniform rod formulation and constructing
a piecewise uniform model to represent the tapered geometry. Predictions of this semi-analytical
approach are validated with axisymmetric finite elements, and several physical aspects are discussed.

Axial waves in a uniform rod embedded in an elastic medium

In this section, the dispersion relation for axial waves in a uniform rod embedded in an solid
medium is derived based on the elementary rod theory and the Navier’s displacement equation, re-
spectively. The coupling between the rod and an infinite medium is represented by surface traction
restraining the rod and. The general form of the governing equation for a uniform, embedded rod is
adopted from Parnes [6]], but in this paper it is solved using different soil dynamics formulations

Governing equation

We consider a circular rod and denote z as the propagation direction and 7 as the radial direction.
The equation of motion for the rod is written as

2 2
8 Urod a Urod
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where F is the Young’s modulus, A is the cross-sectional area, p is the density, 7, is the transverse
shear traction, S is the circumference and ,.q is the displacement of the rod. The integral of traction
is simply: |, ¢ Trz(a) dS = 2mar,.(a) where a is the radius of the rod. Rearranging the governing
equation, one obtains
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which after assuming the motion to be spatially and temporally harmonic, can be written as
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To enable the traction to be expressed in terms of U4, one needs to consider wave propagation in the
surrounding medium and the displacement continuity condition.
Waves in soil

In the following paragraphs, the equations for cylindrical wave propagation in an infinite elastic
medium are presented, largely after Kolsky [[13]]. The displacement vector is defined as

u= [ur Ug uz] “4)
The strains can be written as
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The curl of the displacement vector u is expressed in terms of rotations around the orthogonal axes

1 1
écurlu = §V X u= [wr Wy wz] (6)
where
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The motion of the soil is governed by the Navier’s displacement equation
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where the dilatation A in cylindrical coordinates is
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Both the tangential displacement u4 and variation of the other components along the 6 direction vanish
under the axisymmetric motion assumption. The dillatation and rotation equations are then simplified,

leading to
PN 10A
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where k¢ and £} are the projections of the bulk wavenumbers onto the radial direction. The above
are Bessel equations, and their solutions for outgoing waves can be written using Hankel functions
(which are combinations of linearly independent Bessel functions)

(10)
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Throughout the following derivations, Hankel functions of the second kind are used since the time-
harmonic motion is represented using /! component. For convenience, the subscript denoting the
kind is dropped hereafter. The soil displacements are assumed to be of the form

u, = Ue](wtsz)

u, = Welt=k2) (12)
Substituting them into the expression for dilatation and rotation we obtain
ou U
A= {— +— - ]kW}
ar r
o1 (13)
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where the space-time harmonic term was ommitted for brevity. Kolsky [[13]] proposes the following
form of U and W to satisfy the above equations

0
U = ClgHo(k’ZT) — CQkHl(k’gT') = —Cl(k’z)Hl(k?Z’l") — CQk’Hl(k’g’f‘)
(14)
Cy 0
W = —JkCyHo(Kyr) + 2 [ Hy (k)] = —ghC Ho(Kyr) + JCok] Ho (K1)

r Or

ICSV24, London, 23-27 July 2017 3



ICSV24, London, 23-27 July 2017

Table 1: Material properties used in predictions.

material E,GPa p,MPa v  p,kgm™3

root 14 - - 540
soil - 15 0.33 1500

The relationship between the constants C; and () is established by assuming that the rod is rigid in
the r direction. Finally, after some arithmetic manipulations, an expression for the shear stress on the
surface of the rod is obtained

ow . oy (ks)®
Trzlr=a = Mﬁbza = ugkkp Lt (kpa)] =5 (15)
Rod-soil interface
The displacement continuity condition states that
Urod(2, 1) = u,(a, z,t) (16)
which results in
o Urod { [Ho(kga) k5 Kl Ho(kga)} }‘1 a7
= —
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Coupled dispersion equation
Equations and can now be substituted into Eq.
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After several rearrangements and simplifications we obtain
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where ¢ is the free rod wavespeed. The above is a biquadratic equation in k. If one assumes
that the wavelength in the rod is much longer than in the surrounding soil, the projections of bulk
wavenumbers onto the radial direction may be approximated as the bulk wavenumbers themselves
(k7 s = krs). This enables the wavenumbers to be identified from Eq. directly.

The solution of Eq. (20) yields two wavenumbers, only one of which corresponds to a physical
solution (the other implies the growth of the wave and unbounded wavespeed). In Fig. [I| we plotted
the phase velocity and attenuation for that wave together with a reference result obtained using a semi-
analytical finite element method and bulk wave velocities. The radius was taken as ¢ = 0.1 m and
respective material properties are gathered in Table[I] It is confirmed that Eq. (20) gives an accurate
prediction of the axial wavenumber (below the cut-off frequency of the first higher-order wave). One
may also notice that at higher frequencies, the phase velocity tends to that of a free rod.
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Figure 1: Phase velocity and attenuation for a uniform embedded rod — comparison between the
analytical model and a numerical prediction based on a SAFE-PML approach.

Piecewise uniform model for a tapered embedded rod

In this section a piecewise uniform model for an exponentially tapered embedded rod is consid-
ered. The variation of the radius is assumed to be

r(z) = ae™"* 1)

where a is the starting radius and [ is the flare constant. In such case, no analytical solution is
available, as the coefficients in Eq. (I)) are not constant any more. Furthermore, we note that the
wavenumber depends on the radius of the cross-section and therefore would vary with position for a
tapered rod.

As an alternative, the tapering is represented as a series of discrete steps. The buried tapered rod
is thought to be composed of a large number of uniform segments, each of which can be described
by equations derived in the previous section, resulting in a piecewise uniform model. It is assembled
using an approach outlined in our previous work (see the appendix in [3] and a related supplementary
material [14] for code). For brevity, the assembly process is not presented here, and the reader is
referred to these references for further details.

In the following it is discussed how the neighbouring elements are coupled or, in other words,
how the scattering matrices are calculated. First, for the piecewise uniform model, the non-physical
solution to Eq. (20) is disregarded. There is only one degree of freedom allowed in the rod model.
At each junction, the usual displacement continuity and force equilibrium must hold and these are the
preliminaries for scattering matrix calculation. The resultant force over the cross section is calculated

as

P = EA% = —kEAq* + )kEAq” = Dgt — Dq~ (22)
z

where D is defined in the last step.
Consider a junction between two rod elements with different radii, denoted by a and b. We can
write the displacement continuity and force equilibrium equations in a matrix form

1 1 |1 1 q;}
o b)) lo b {%

Note that waves ¢ and ¢, are incident upon the junction, whereas waves ¢, and ¢, are leaving
the junction. In this formulation, any additional radiation effects related to the discontinuity are
neglected, i.e. scattering matrices are calculated in the same way as for an unrestrained rod. Equation
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Figure 2: Relative error of the magnitude of the receptance averaged across the frequency range
between 1 Hz and 3 kHz as a function of the number of elements.

(23) can now be rearranged to express waves leaving the junctions in terms of waves incident upon
the junction, enabling the scattering matrix to be calculated as

qa_ o 1 Da _Db 2Db q;_ (24)
4 f D.+Dy| 2D, Dy— D] g,

The excitation is applied at the large face of the rod resulting in an excited wave of amplitude

1

+:
—D,

e

(25)

where the subscript 0 denotes that the expression refers to the first piecewise element. In this model,
we assume that the reflection coefficients at both ends of the rod are the same as for a free end
(Rrp = Ry = 1). The fine tip could be treated as stiffness constrained, where the stiffness is a
frequency dependent term appropriately deduced from the governing equation.

Convergence

To establish how the rate at which the piecewise uniform model converges, a series of calculations
for the same structure with increasing number of elements were conducted. Material properties are
the same as in Table [I| with the exception that we added a loss factor for soil (7 = 0.1). The starting
radius was taken as a = 0.1 m, the flare constant as # = 1.6 and the length as L = 2 m. The results
of the study, presented in Fig. [2] suggest that a relatively small number of elements is required to
achieve acceptable accuracy. In the considered example 50 elements suffice to achieve an relative
error of ~ 0.1% with reference to the finest grid (n = 1000).

Numerical verification against finite element simulations

The predictions of the piecewise model were compared to a finite element simulation (COMSOL).
Since the interest was confined to axial waves, the domain was assumed axisymmetric. The soil
surrounding the root was modelled using a quarter of an ellipsoid, to resemble the configuration of
the analytical model (see Fig. [3a)). The excitation force was applied to the large face of the rod as a
boundary load and dynamic responses were recorded at six points along its length (0.15, 0.45, 0.75,
1.05, 1.35 and 1.65 m from the force location). The infinite extent of the soil was represented by a

low-reflecting boundary at the convex surface of the ellipsoid (parameters automatically adjusted by
COMSOL).

6 ICSV24, London, 23-27 July 2017
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Figure 3: Numerical validation against finite elements: (a) FE model (14145 elements); (b) frequency
response functions predicted by the presented model (n = 50) and by the axisymmetric FE model.

The receptances plotted as magnitudes and frequency-unwrapped phases are shown in Fig. [3b
The results agree very well across most of the frequency range, confirming the validity of the piece-
wise uniform model. Discrepancies at low frequencies are attributed to the fact that the tip end is
assumed free in our model, hence the whole structure has a rigid body mode at zero frequency. This
is not the case for the finite element model, where the response reflect the apparent infinite extend of
the soil.

Discussion

Presented frequency response function offer some fundamental insights into wave motion in such a
structure. We note that the unwrapped phases (in particular, their slopes) correspond to the wavenum-
bers, whereas the magnitudes reflect wave attenuation. Results from Fig. |3b|indicate that, unlike in
a free tapered rod, waves decay towards the fine tip, as they radiate into the surrounding medium.
By accounting for the locations of the points where the responses were computed, one acknowledges
that the attenuation grows towards the fine tip. The variation of the wavenumber is not immediately
apparent from Fig. [3b] However, since the wavenumber in an embedded uniform rod depends on the
radius, we expect that this is, indeed, the case. Finally, contrary to what is observed in free tapered
rods, there is no cut-off region for axial waves as they propagate from zero frequency. Despite the
computational issues reaching beyond the scope of the present article, we note that the piecewise uni-
form formulation is at least a couple of orders of magnitude faster than the commercial finite element
solution.

Conclusions

In this paper we focused on predicting the dynamics of an exponentially tapered rod embedded
in a solid medium. We first derived a dispersion equation for axial waves in a uniform embedded
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rod and used it in a piecewise uniform formulation which allowed for representing the varying ge-
ometry. A convergence study indicated that a relatively small number of elements was required to
get satisfactory predictions. Finally, the piecewise uniform model was verified with a finite element
simulation, showing very good agreement. It was observed that, unlike in the free tapered rod, there
is no cut-off region for an axial wave and that it decays towards the fine tip owing to radiation. Fi-
nally, the wavenumber for embedded rods depends on the radius, so for tapered rods in soil it is
position-dependent. Future work will include a further exploration of the physics behind the observed
phenomena, also for flexural waves, and an experimental validation.
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