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1 INTRODUCTION

The problem of acoustic scattering at low grazing angles is of importance to studies of surface

and bottom reverberation; but techniques developed for acoustics applications will find

application in a wide range of other disciplines: such as the design of noise reducing tiles and

coatings and clutter for sea-borne surveillance radars.

This paper considers the results that can be derived using the parabolic equation method, which

is applicable to low angle scattering, and briefly mentions possible extensions to this technique

that have wider applicability. -

The paper begins with a formulation of the low angle scattering problem, and then goes on to

consider effective reflection coefficients and the angular distribution of intensity. Numerical

solutions to the inverse problem are then described; and finally extensions of the method to

larger angles are presented.

2 FORMULATION OF PROBLEM

Consider a time-harmonic wavefield p scattered from a one-dimensional rough surface h(x).

with a pressure release boundary condition. The wavefield propagates with wavenumber k, and

is governed by the wave equation(V2 +k2)p =0. Angles of incidence and scattering will be

assumed to be small with respect to the surface. The coordinate axes are x and z, where x is the

horizontal x20, and z the vertical directed out of the medium.

The field has a slowly—varying part w,,,(x,z)=p(x,z)exp(—ikx). Incident and scattered

components wiand lysare defined similarly, so thatl/I,U,=w,-+ws. This field then

approximately obeys the parabolic wave equation

Zika+lflzz=0 (1)

3 GOVERNING EQUATIONS

The field is related to the surface by the following equations eg [1, 2]:

W;(r)= -f G(r;r')aW—(r)dx'
o '92 (2)
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where both r=(x,h(x)), r' =(x'h(x’)) lie on the surface: and

ws(r)=i 6(r;r')""fT(’)dx' (3)
0

where r’ is again on the surface and r is now an arbitary point in the medium. Here G is the
parabolic form of the Green’s function in two dimensions given by

= a 1 e for x'< x
G(x,z;x’,z’) x—x’ XP 2(x—x’)

= 0 otherwise

 

(4)

where a = / 27d: . This form gives rise to the finite upper limit of integration in (2) and (3), ‘

which holds provided the angles of incidence and scattering are fairly small with respect to the
- x-direction. ‘

The main analytical and numerical problem is the inversion of (2) to give the “induced source”

aw all at the surface. i

- i
w.W) = 0
w.- (mm = - vs (2411(1)) ‘

 

Figure 1: Diagram defining the symbols used in this paper

4 EFFECTIVE REFLECTION COEFFICIENTS AND ANGULAR DISTRIBUTION OF

INTENSITY

We consider the dependence of the scattered field on the surface statistics and the grazing
angle. In particular we seek effective reflection coefficients, and the angular distribution of
intensity, and examine how they change as the incident angle approaches zero.
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At low grazing angles most analytical methods such as the usual perturbation method and the
Kirchhoff approximation break down (with some exceptions — eg [3, 4])

An adaption of the parabolic equation method provides a tractable approach to the problem.

5 EFFECTIVE REFLECTION COEFFICIENTS

Suppose a plane wave is incident upon a statistically stationary rough surface. Then the
coherent scattered field < W5 > is a specularly—reflected plane wave. This quantity is given by a
effective or 'averaged’ reflection coefficient T9 which characterises the rough surface and
depends on angle of incidence 9. It is well—known (for a pressure-release surface) that as the
grazing angle :1) tends to zero, the surface becomes perfectly-reflecting, so that T9 approaches
its smooth-surface form.

6 IMAGE PROPERTY

From the above observation the following invariance holds for an arbitary source of
illumination: The coherent field remains unchanged if the source and observation point are displaced by
equal distances in opposite directions. This holds for an arbitrary source S because, by specular
reflection, it applies to every plane wave component of S.

7 MEAN FIELD

Scattered field near surface:

We first find the field along a plane: Assume slight roughness so that there is a plane at 21 close

to every point on the surface h(x). Expand the scattered field ws(x,zl) along this plane about
h(x) tosecond order in (21-h). We thus obtain

2
zl_h]2 a

In this expression the z- derivatives of ups at the surface can be written in terms of derivatives
of the known incident field, and the governing parabolic integral equation. After neglecting
higher order terms we can invert this analytically, to obtain an explicit expression for the field
111s in terms of the surface.

vis(x,z,) a 1;/s(x,h)+[z1 —h]

Average:

The scattered field is now in a form which is easily averaged. We obtain

(wj(x,zl)) E —el"[‘i“°"]‘(1+T9) (5)
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Here (1+Tg) is the effective reflection coefficient which we seek; To is given by

_E 416: -1dp_<¢)Ts—flacoseife ‘E [p(s)5 ik d: ]fi} (7)

where pis the surface autocorrelation function. For example, for a fractal surface this becomes

Ira 1IikS+]1/L ' ' (8)

 

8 I ANGULAR DISTRIBUTION OF INTENSITY

Using the explicit expression (5) for the scattered field along the plane it is possible to find the
higher moments on the plane, in closed form. The moments of the field anywhere in the medium
can also be found, but in general this can only be done in terms of multiple integrals which
cannot easily be written in closed form.

However, it can be shown that the second moment does not change with propagation away
from a fixed plane (apart from deterministic phase change due to distance). Thus the intensity
distribution in the medium can be found in terms of its value along the fixed near-surface plane.

In order to form the higher moments of the wavefield we take powers and polynomials of the
above expression for the scattered field, average, and truncate at second order. The scattered

field has the form (1+us(x)+bsz(x)) where sis a small random function. Consider for
simplicity the expression

P,l = (1+[.€1+(;‘2])’l (9)

where sl- is random, of order 6’ forj = 1,2 and all odd-order terms (eg 8, and 8182) have mean

zero. This has binomial expansion

P,, = 1+n(e1 + £2)+C,,l2(e1 +t~:2)2+...+(s1 + £2)" (10)

Expanding further, truncating at second order, and averaging yields

(P")51+n<£2>+Cn'2<efi> (11)

The error thus incurred clearly diverges for large n since the coefficients Cnlj grow exponentially

with n. The approximation is reasonable provided n254 << 1. Once the quantities required for
the effective reflection coefficients have been obtained, the higher moments near the surface are
relatively straightforward to evaluate from <Pn> above.
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9 NUMERICAL TREATMENT

The principal advantage of the parabolic equation description becomes clear when the system is

discrefized. Due to the upper limit of integration, in the resulting matrix equation the matrix is

lower triangular, and inversion is carried out by Gaussian elimination, which is highly efficient.

This requires 0(N2) operations rather than 0(N3 ) needed to invert a full matrix in general.

More explicitly: The region of integration is discretised using a regular grid of N points {x,},

where x, = rAx and Ax is small compared with variation in the surface and in the field Vim

incident upon it. The integrals above are thus written as sums over subintegrals, over which the

slowly-varying terms are treated as constant, and the first is written

fit... a fit (12)
where tildenotes the vector V", E w(x,,,,h(xm)) and G is the matrix

6",,(x,z) = 6m +J’ ’ G(x,z;x',z' )dx'
Xv-I

The integrals may be treated semi-analytically, and the above matrix equation is inverted to

solve for the field at the surface. The second integral is discretised in the same way to yield the

field at any point in the medium. This possibility is considered below.

10 INVERSE PROBLEM - RECONSTRUCTION OF ROUGH SURFACES FROM

SCATTERED DATA

A major problem in the study of surface scattering is that of recapturing the surface explicitly

from scattered data. There are numerous applications, from radar to underwater acoustics.

Despite this motivation, there has been little progress for complicated surfaces, and in practice

treatment is largely limited to iterative methods, alough direct methods have appeared recently

(es [7])-

The parabolic equation regime provides a highly efficient method of solving this problem [8], as

seen in the example below.

Data:

Consider an irregular surface illuminated by a Gaussian beam incident at a low grazing angle.

Suppose that data for the scattered field IIIs is available at two horizontal planes, say 21, 22.

Denote the two functions uls(x,z,-) by Vii, where j = 1, 2, ie.

w=mU@) OH
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Solution:

The above data allow the inverse problem to be formulated as a pair of coupled integral
equations, in the following way:

Provided z is large compared with the surface variation, the exponent in the Green’s function G ‘

can be approximated as i

ik[z — h(x')]2 = ik :2 — Zzh(x')
2(x—x‘) ‘ 2(x—x') (15)

(The error is the factor explikhzll(x-x’)]; although this exponent becomes large as x’ approaches
1:, the phase variation in G is nevertheless dominated by the approximate exponent).

Now define the function

E(x) = exp[—ikh(x)] (16)

Recall that the scattered field at depth 2 is related to the surface by the integral

_ .Jv/(r’) . .
Vs(r)—J:G(r,r) 32 dx (17)

where r’ is a point on the surface and r = (x,z) is any point in the medium.

 

Using the above expressions we can now relate the scattered data to the surface by

 

x ikz2 ’

e [2(x-x') E(x,)z,/(x-x') all/(x )dx,
Vs(xl 2}) E “J

a xix—x 32 (18)

for j = 1, 2, where the surface-dependent functions E and Gill/:92 appearing here are

independent of the depth 21-. this equation for j = 1, 2 thus represents a pair of coupled integral
equations, in which the left-hand sides are known, and the two unknown functions (including E
which forms part of the kernel) appear under the integral sign.

 

Write these equations as

{W1,WZ}EA{E,8VI/&z} (19)

where uli represents the data (ie the vector w§(x,zi)). The problem is then to invert the non-

linear operator A.

Numerical Implementation:

 

    

  

 

   

In the treatment of this coupled system, the parabolic or 'one-way’ nature of the equations is
crucial. In effect, the inversion of the operator A is achieved by a generalization of Gaussian
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elimination. the form of the surface follows immediately from knowledge of exp(ikh), or for

moderate surface variation by a simple transformation of any / :92. '

Making the simple assumption that both (91;! / 82 and Eli/(x_x')vary slowly over each subinterval

compared with the deterministic variation, these functions can be taken outside the integrals

and for j = 1, 2, the equations may be written

w.(x,..z,) a f,Efi"‘""‘"w’(x.)/3.,.(z,) (20)
7:1

where Xr is the mid-point (2:, +x,,,)/ 2, E, = E(x,)

x", 17:3

p (z.)=a lipizflldxr

I — x m (21)

for j = 1, 2. The coefficients ,8 , which depend only on n-r, may be found exactly in terms of

Fresnel integrals. We then obtain a pair of matrix equations, with lower-triangular matrices

,B(zj ), which may be solved simultaneously from the left.

11 NON-PARABOLIC GENERALIZATION FOR DIRECTIONAL SCATTERING

The parabolic equation method has major advantages, but also distinct limitations. The main

advantages are high computational efficiency, and that it is analytically tractable; both these

result from its uni-directional form. However, the method is valid only for small slopes because

of the requirements of small angles of scatter, and backseatter is ignored; in addition the

analytical treatment described above is valid in the perturbation region of small surface

roughness. This raises the question: can the technique be generalized to include wide-angle

scattering and rougher surfaces?

DIRECTIONAL OPERATOR SPLITTING

The advantages of the parabolic equation method can be generalized to the full wave equation

in the following way: Consider the Helmholtz integral equation (for given boundary conditions)

which relates the incident field to the unknown field values at the surface. This can be written in

operator form as

Winc(r)=A¢

where (in the two—dimensional case) r = (x,h(x)), ¢ denotes the field function sought ast‘ the

surface, and A is an integral operator depending upon the rough surface. we can in general split

the range of integration at each horizontal point x. This gives rise to a pair of integral operators,

the ’left’ and ’right’ components of A, and we obtain

mu) =(L +R)¢ (23)
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Series Solution:

Now suppose that the field is incident from the left. Then, although the operators L and R are
comparable in norm, their action on (1) is highly dependent on the angle of incidence, and up
may be substantially larger that 11¢. We can thus expand the inverse of this equation in a series,

and write

¢ =(1—RL_1+(RL_1)2-...)L-1Vlm (24)

This expression can be truncated, say at the second term, or treated simply as an iterative series

in directional terms. Since L represents scattering from the left, when discretized it gives rise to

a lower-triangular matrix, so numerical inversion of the corresponding matrix equation is

extremely efficient. In addition, each term in the series contains multiple scattering effects, and

the leading order backscatter is exhibited by the first two terms. Further analytical work is
needed to evaluate statistics from this series, and it is expected that this will shed considerable

light on the interaction of the left and right-going components of the scattered wave.
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