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1. INTRODUCTION

Non-linear problems in duct acoustics are usually analysed by either charactersistic or finite

difference/volume methods. The latter have a definite advantage for three-dimensional solutions.

for which the methods are a simple extension of the one-dimensional analysis. Finite

difference/volume schemes are well-proven for the analysis of highly non-linear wave
propagation. including shock—capturing. and are widely used in engine cycle analysis. However.

such schemes have not proved so useful for the acoustic analysis of exhaust silencer systems.
where it is necessary to accurately characterise the propagation characteristics of the entire exhaust

pressure pulse over an engine cycle. Such a pulse is typically composed of an initial large

amplitude oscillation followed by a sequence of small amplitude oscillations. The normal
explanation for the inaccuracy in the analysis of the radiated sound pressure is uncertainty in the
boundary condition at the open end of the system. the tailpipe exit. However, whilst trying to
investigate this problem by the use ofa finite volume model of the entire duct and radiated sound
field. an entirely different problem was brought to light. The finite volume model was first used to

' evaluate the radiation condition in the limit of small acoustic amplitudes. in order to compare with
the analytical results available from linear duct acoustics. It was found that the finite volume
analysis did not converge. Subsequent work shawed that the problem persisted for simple one—

dimensional duct acoustic problems and led to a comparison of numerical schemes for the one-
dimensional analysism' small amplitude acoustic waves.

In this paper. it is shown that the conventional finite difference/volume schemes for non-linear
wave propagation are inherently unstable when used to analyse the propagation of small amplitude
waves. Since. as noted above. a large proportion of an exhaust pulse consists of small amplitude

oscillations. this could be of fundamental importance to the evaluation of radiated sound pressure.
A pressure-correction finite difference scheme is then given. which gives accurate results for the
propagation of waves of either small or large amplitude.

2. GOVERNING EQUATIONS

The system of equations under consideration is the one dimensional system of Euler equations for
inviscid compressible flow:

a a _ -
3711+;(Pul-0 (l)

3 a 2 L .
5(pu)+;(pu +p)_o (2)

Proe.l.0A. Vol 15 PM 3 (1993) 761   



 

   

  
  

  
  

     

       

     
  
  

        

    
            
   

    

      
       

       

Proceedings of the Institute of Acoustics

PRESSURE CORRECTION METHOD

 

a :9 '
— +—- h = 0 3a, (1») 9100" l ( )

where t is the time. x is the space variable. p is the density.u is the velocity. 9 is the total

7 -1 I12 penergy. p = To h - —2— is the pressure and h = e + E is the total enthalpy.

The application considered in this paper is that of sound propagation in a closed. rigid duct with
an oscillating piston at one end and a reflecting boundary at the other end. The boundary
conditions used are that fluid at the first boundary. x = 0, has the same velocity as the
harmonically driven piston. 14 = u cos wt, and that at the other boundary. x = L. the fluid
velocity is zero. All other propertieg required at the boundaries are extrapolated from' within the
fluid. Initial conditions are for unperturbed fluid everywhere. The examples shown correspond to
a driven frequency of 100 Hz which is non-coincident with a resonant frequency of the tube
which has length 0.5m. for a speed of sound of 340 m/s.

3, CONVENTIONAL FINITE DIFFERENCHVOLUME FORMULATIONS

 

  
3.1 Finite Volume Formulation
The set of equations (1) to (3) are numerically modelled using a Cell-Centered Finite Volume
scheme [1]. In vector form, these equations can be written as

t9 3 ’
—v+— v = 0 . 4a.- 9.4-) - v H

  

Integrating (4) overa volume V,- = A.Ax..for constant area A. between x.._,,, and x...” gives

filter...” aroma]. . (5)

where M9: is the average value in the volume Vi. In the computational domain the vector y is
stored at the center of each volume and the values of vec f are ee d at the vertical edges of
the rectangles. At edge t+1l2, for example. fun; =-5(Ell_’7l+£ E... . By substituting this in
equation (7) and simplifying. it can be seen that tn this simple one-dimensional case the Cell-
Centered Finite Volume scheme corresponds to a second order central difference scheme.

 

    3.2 MacConnack's Method
The basis of this scheme [2] is an explicit predictor—corrector approach to the solution of equations
(1) to (3). The predimor uses first-order forward differences in both space and time. whilst the
corrector is again first-order. but uses forward differences in time and backward differences in
space. The entire scheme is second-order. The method captures imbedded shocks but 'smears‘
them over several grid points. The numerical artificial viscosity needed for smooth and accurate
simulation of shock waves in the flow is applied impicitly.
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Figure 1. Finite Volume Method. Mid-point velocity variation over the first three cycles for:

(3)11], = 0.01 m/s and (b) up = 10.0 m/s

3.3 Total Variation Diminishing (TVD) Scheme

The particnlar scheme used was that of Hanen [3]. The scheme is again second-order and explicit,

but may be considered as an order of magnitude greater in complexity than MacCormack‘s

method. In particular. the scheme advances locally along the characterisic and particle paths and

Proc.l.0.A. Vol 15 Far! 3 (1993) . 763  



 

   

 

   

   

   
   
 

Proceedings of the Institute of Acoustics

PRESSURE CORRECTION METHOD

thereby retains the advantages of the method of characteristics. The scheme is shook-capturing
but, in order to reduce shock 'smearing‘, the total variation diminishing propeny is introduced.
This and the previous method have been used successfully in the context of engine exhaust gas

flows. although they are ideally suited to the determination of steady-state solutions.
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MacCcnnack‘s Method. Mid-point velocity variation over the first three cycles for:
(a) up =0.01 m/s and (b) up = 10.0 m/s
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Figure 3. TVD Finite Difference Method. Mid-point velocity variation over the first three cycles
for. (a) tip = 0.01 ntls and (b) up = 10.0 m/s

4. PRESSUPIE-CORRECTION METHOD

The basis of most pressure-correction methods is that of the Semi—Implicit Method for Pressure
Linked Equations (SIMPLE) scheme of Palanlter and Spalding [4]. applicable [0 incompressible
flows. Funher deveIOpi-nents gave schemes applicable to compressible flows, and then McGuirk
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and Page [5] developed a scheme for the solution of flow fields with a wide range of Mach
number, from regions of supersonic flow to stagnation regions. Since the time-dependent flow in
an exhaust system varies within such wide limits. it seemed appropriate to develop a variant of
that scheme for this panicular application.

The basic procedure is to advance the momentum field one time step and then to evaluate the
pressure corrections required to satisfy the remaining conservation equations on the basis of these
advanced momentum values‘ The pressure corrections are then used to update the density.
momentum and energy fields. From the finite difference approximation for equation (2) .

1 1 _ _
E{(P")i+tn _ (Pu)?+t12} + ;{"i ‘ 1(p“)i~tlz _ ".'(P“).-t/2 + PM ‘ 17.} = 0- (6)

where the superscript 0 denotes the value of the property at the beginning of the time step and the
overbar denotes values averaged overa cell. Thus

Amuhun + BOWL“: = D u (7)
_ Ax _ A):

Where A ="iot +3 . B = _“i and D = 13—10”th “[Pm ‘PiJ-

With given boundary conditions, equation (7) can be solved implicitly by a tridiagonal routine for
the updated momentum values.
The next step is to derive the pressure—corrections from this change in momentum The change
equation relating to equation (7), making use of the standard SIMPLE approximation that
coefficient A dominates for small enough Ar.is

A5(Puam) = {5PM _ apt] . 7 V (8)

From the continuity equation (1) we have the corresponding finite difference equation:
1 1
39’s ‘P?}+;{(P“)Mn ‘(p‘lL-tlz} = Aq ’9 O (9)

where the inequality results from the provisional values of density and momentum. The pressure
field is corrected in just the right manner such that the con‘esponding changes in the density and
momentum fields enforce satisfaction of the continuity equation. that is

A!
apt +E 6{(pu)iol12 _ (pu)i-lli} ‘3 ‘Aq (10)

where the changes in pressure and density are related through the equation of state. namely

5 .
p.- 1 p' 1 =SI-«irai (11)
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An expression for the pressure corrections now follows from equations (8) to (1 l) and is of the

form

asp; +b§Pi+l +Capi-l = _Aq

for known coefficients a,b,c and Aq.
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Figure 4. Pressure-Corrécfion Method. Mid-point velocity varialion ove_r the first three cycles‘ for:
(a) up = 0.01 mls and (b) up = 10.0 mls
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The distribution of 6p is calculated using an implicit tridiagonal iteration routine. This done. the

pressure distribution and conservation system. via the equations (9.10 and l 1), are updated. The

energy equation is expressed in the difference form

ItZ1;{(PP). ' (139)” + le‘{(P“)i+tlzh? _ (pu)i-lllhio—l} 0 (13)

to enable advance of the energy and enthalpy values.

5. DISCUSSION OF RESULTS

Results are presented in Figures 1 to 4 in the form of dimensionless acoustic velocity variations
over the first three cycles. for each of the four methods of analysis in turn. The velocity is non-

dimensionaliscd with respect to the piston velocity and the variations of velocity are plotted for the

centre point of the duct Results are given for maximum piston velocities of 0.01 m/s and 10.0
m/s. It is seen that at the lower piston velocity the first three methods give wildly oscillatory

solutions which fail to converge, In contrast, the pressure-correction method converges quicldy to
the quasi steady-State solution. At the higher piston velocity. the first two methods are still non-
convergent. while the TVD scheme converges very slowly. The use of artificial viscosity to quell
unwanted oscillations works in steady flows. because the damping terms tend to zero as the
solution converges. leading. in an asymptotic limit. to the solution of the system. In this case.
however. the flow is only quasi-steady so the damping terms will continue to be significant as the

solution progresses. The key benefit of the pressure-correction method for small amplitude
disturbances would appear to he that errors in the momentum advance are corrected before being
fed directly to the continuity equation. which othentvise forces unwarranted large variations in the
density and pressure fluctuations.

6. CONCLUSIONS

Many finite difference/volume schemes which are stable when used for high amplitude acoustic
pulsations become unstable as the amplitude is reduced. A pressure-correction scheme has been

found to be stable at high and low amplitudes and would therefore seem ideal for use in engine
exhaust flow analysis. both for overall engine cycle work as well as for the evaluation of radiated
noise.
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