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1. - INTRODUCTION

The existence of undemater sound channels has long been known and their ability to trap
sound and so enhance long range propagation has been well studied (Ref 1. pp147. and
references therein). it is equally well known that sound is not perfectly confined in these
waveguides and that a certain amount of acoustic enery leaks out of the duct. rendering them
ineffective at low frequencies. This leads to the concept of a cut-off frequency. below which
ducted propagation does not occur.

The amount of duct leakage is. as shown below. controlled by the imaginary part of the
horizontal wavenurnber. the so-called decay constant. This is a difficult quantity to calculate.
An exact expression would require a complete analytical solution of the Helmholtz eigenvalue
problem. but unfortunately this has not proved possible. Numerical solutions to this problem
have been found for certain bilinear ducts (Ref 2. 3]. but these are of limited application:
apprordmate analytic formulae have been obtained via the WKB method (Refs 4. 5]. but these are
restricted to a limited range of frequencies: and a variety of empirical formulae eidst [Ref 6. 7).
titted from physical or computer-generated data. but these too cannot be universally applied to
any duct.

lnthbpapa'.wepresentsnewarpmsianforthe surface ductdecayconstant. based ontheWKB
apprordmation leg Ref 8. Ch 6.7] but extended to cover all frequencies. it is valid for realistic
bilinear surface ducts. ie, the gradients in and below the duct are of the same order of
magnitude. and it predicts leakage at all frequencies. both above and below a cut-oil frequency
which arises from the derivation of the constant. As such. it is an improvement on existing
formulae. as we shall demonstrate. This constant is used in the propagation loss model
lNSlGHT [Ref 9).

 

  2 INSIGHT DECAY CONSTANT
     

11 Formulation    

 

The INSIGHT decay constant at frequency f for a duct of depth H. surface sound speed co. and
sound speed gradients in and below the duct of magnitude cl'. ca'. is given in units of inverse
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and where

z %
cm = [anon-1] , r 2 r0 . [Sal

d
m = d—Icm. (Sh)

Also. In. which will be interpreted as the cut-ofl’ frequency. and f; are given by

s
I9 q; '

f = —c ' . (4)
o B ' (ch'H)

 

a .a _ ' - . v
r. =fo(l+5l9nl a). 1.16 to. -* (5)

(Throughout this paper. decay constants are denoted by a. with a subscript to indicate the

author or model.)

2.2 Derivation

The well-known normal mode solution for the acoustic pressure field is [Ref 9. p122]. ustng the

asymptotic form of the Hankel function. and with acamplut horizontal wavenumber x“ =

Ewan.

War
|

p=t2x1)‘2¢nlz.io..tz.le‘“"' ° 1/:
fl (Kflr)

Each mode of the field decays exponentially at a rate yven by a... Hence we identify the decay

" constant of the n'i.h mode with the Imaginary part of its horizontal wavenumber. In what

foliowsweshan assume that lunl<<|§nl andso Hula-g“? Also. forthea'naflg'annganglesot'

mysmasmfaoeduakz-i-cnla.
-

 

Substituting the appradmate identity

imlxn’)

2 i in l

 

an = imltn) :

into them apprmumation M2. Set: 2.8. Eq275)

    

lmknzl _ e-Ilgniynlxfldz

n.“ kn,

weobtain
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e-aim- lull] Id: _

on =—— . (3)

2131

where 1,. is the vertical wavenumber, l‘“ the cycle distance. and 2",. 22.. the modal turning

points.

Now. as frequency is increased from zero in a surface duct. the channel will start to support a

mode structure. The first mode to be trapped as frequency increases is the lowest order (n=l|

mode of Eq 6: at higher frequencies. higher order modes also become trapped. and the duct is

referred to as cut-on. From the point of view of duct leakage. the critical frequency is that at
which just one mode is trapped and dominates the sound intensity. Accordingly. we shall

concentrate on this first mode only. and its attenuation constant o1 will be referred to as the

decay constant of the duct.

Specialising to the billnear duct with wavenumber profile

 

21.5 as SH
it'll): 1”} 2;?) z m

k“ (1+éiz-Hl) 22H

the spot-tent of Eq (6] becomes. to first order in cl‘. eg' (dropping the 11:1 subscript)

I, '1 co 1 l 1
.2!“ [1(1) nu = 5E2. ,, Eh“: _ koa) + 0.02 _ km]: (a,

me first eigenvalue is given by the WKB approiomatlon (Refs Eq (6.7.10). p132) as

5

ko’ - x2 = (Tim? (9)

 

4 Co

UsingEqunqufllvvcs

of" um ldz =28-(1+cl‘/ca') (mo)?- 1 r 2 {a (10)
n 2

As we shall discuss in Sec 3.2. to is the dominant parameter in this urpression. and gradient

dependence should be contained within it. Thus. we can approximate (l + cl'lcz') by 2. ie. put Cf

= of. which is apprwdmately true for realistic ducts. with little error to al.

mecycledistanoefwamyofsurfacegnzingangleeis

 

ran—“Hanna ' " ill)
Cl. cl. 130
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For rays trapped in the duct. the turning point 2]. at which fink-O. satisfies 2, s H. We shall use
add in this expression at all frequencies. This gives improved behaviour at low frequencies.
Le. a non-zen: constant at f = 0. and induces little error since the exponent is the dominant
factor. Substituting Eqs (10). (11) into Eq (6] gives the expression

1 .
o = - —-——c] ism“n . (12)

4 2c°H

This WKB expression Eq (12) is shown in Figure 1. it has two obvious defects; it holds for
inflection at f=fo. Both these defects arise because of the nature of the function CID. and we seek

to modify C as a cure. u_
. '1 . H r uiflw h '

ran anon/-
I1 - 1L: e
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We accept Eq (12) for the region f>r1 where the gradient of a is increasing: at f=f1. the moment of
o is a minimum. Attempting to reproduce the Kerr curves of Sec 3.1. we wish to avoid the
decreasing radient for Rf}. and so we choose to adopt a linear continuation of (If) for
frequencies <f1. continuous in both value and gradient at f=f1. That is. if we define the function

flit) as in Eqiz). then we redefine the decay constant to be

 

GI=-l- cl em“. (13!
42eoH

 

Elementary calculus shows that f, must solve

I a I

91I[(f|/f¢;)i -1]'(I‘1/fo)i - l = O.

and qu5) gives the approximate unique solution of this.

This continued alpression Eq (13) is also plotted in Figure i. We can see that we have solved . -

both problems: :11 has a monotonic gradient (as does fl). and is defined for all frequencies.

We interpret a as the cut-off frequency of the duct. This is because the function (if) appearing in
- the definition of in [Eq 3a] is defined only for rare. At this frequency. (£0. and the W'KB
acpression. Eq [13). gives a decay constant of WWI") or a pressure decrease of He every my cycle.
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One can also show that re is the frequency at which the WKB eigenvalue is equal to the
wavenumber minimum. x2=kH1; or equivalently. at which the modal turning point is at the
duct bottom. ie. z;=H.

3. COWARISQN WITH OTHER DECAY CONSTANTS

Having presented the lNSlGHT decay constant. it is time to discuss its accuracy. A variety of
alternative expressions for the decay constant mist. and we present a survey of some of these
here. This is by no means exhaustive. but it provides a framework in which tojudge the validity
of or. Classifying these alternative expressions as numerical. analytic and semi-empirical. we
proceed to a step-by-stepjustiflcation of or.

3.). met Numerical Solutlons

Kerr (Ref 2. p161. Fig 2-30) displays curves of attenuation constant C=2aiq11kol"/3 against
anomaly height g=Hiq1k02) '13. [q1=2e,'/co) for a discrete set ofvalues of s=-[c1'/c2')i/3. These
curves are obtained 'by numerical solution of the exact eigenvalue problem. and have the
property that they give the decay constant ox for any duct with the given 5. ie. variable cr'. 133'. H
such that c1‘/c2‘=-s5'. There is some scale invariance in the problem. which is characterised by
the dimensionless parameters C and g. These quantities have the useful property that the cut-
oil' frequency f0 corresponds to the constant value g=i9ulel3/3 a 2.32. q.

We consider these curves as giving the correct decay constant. and being the result with which to
compare all other decay constants. However. they do have drawbacls: they are not curves of
analytic upressions and they are limited to the values of 5 given in Ref 2. Surface ducts must
have s<0. and realistic surface ducts have {32' > cr'. ie -l < s < 0. but Kerr gives no curves for this
range of s. interpolation in _s is ruled out as we do not know the s dependence. There is no
reason to suppose a linear dependence: it is likely to be more complicated than this. Thus we
are forced to find alternative representations of the decay constant.

Another numerical solution for the constant is given by Voorhis (Ref 3). again in the form of a
set ofcurves. for various realistic discrete value of H. c1‘ and (11'. These do not explicitly exhibit
the dimensionless behaviour of the Kerr graphs. but plot instead av [in dB/kydl against
frequency for diii'erent duct parameters. The Voorhis s=-l curves agree perfectly with are at s=-l
(see Figure 2). Thus. these curves also pr0vlde essential chech on any analytic expression. but

I sutIer from the same drawback as the Kerr curves when being considered as predictive tools.

3.2 Analytic Solutions

Analytic approximations to the numerical solutions are obviously desirable. We present three
such. and compare them with the utact solutions.

3.2.1 1115le

This is given by Eq [1) above.

3.2.2 tableau

Labianca gives a decay constant (Ref 4, Eq 31C) which. in our notation. reads

'3 ‘ .=_x ‘_I'
“i C'— We =(“u')‘m r2 r0

2co 9
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We extend this to the whole frequency range in the same manner as for a]. ie. replace the

function fill) by BU). giving '

.2 1 e ‘
-

x Hate-tinrnm _ m,
9

3.2.3 Brekhovsklkh

Brekhotslukh derives an energy reflection coeil'icient for the bottom of a surface duct [Ref 5. Eq

24.32. 24.42).
.

-l
R, = (1 ‘ e.213! |1[r) | dz)

In our notation. Equattng this reflection coefficient to a corresponding decay term in the

intensity. ie. R7" = e4” where n is the number of reflections. n=r/l‘. we obtain

1 . *1
a = —ln(1+e 21"lmlldz).

2r

This can be evaluated in the same way as Bq (6) and extended to all frequencies giving

1 -1 I l in
a3=—ln 1+e ’( 0" ya [15)

Zr

we now have three analytical expressions for the decay constant - a]. m. an - to compare with

the numencal solutions uK. av.

Figure 2 displays all five constants for a duct with H = 91m. of = cg‘ = 0.025". Ie s=-l. (Ofoourse.

ox depends only on s. not the precise values of H. cf. Cz'. but this is not so for the other

constants] The numerical curves ox, av are in good agreement. as we would upect for strict

solutions. or the analytical curves. a, and or, agree well with the Kerr curve: as diverges for low

values of anomaly height. though agreement is good above the cut-oi! frequency. at g=l9|:/8)3/3.

At s=-l. then. both INSIGHT and Lahianca constants seem accurate.

Physical values of s are used for the Voorhis curves. and the analytical formulae can be

compared against these. Figure 3 shows curves for a duct withH=9hn. c1'=0.025-|. cz'dMJSs". te

s=-o.74. This time the numerical curve appears shined to the right. and the analytical curves

are little changed from their s=-l values. Agreement Is still good. Comparisons with Voorhis

curves at other values of H. of and 62' show similar agreement. provided 5 is not too small or too

large in magnitude. The universal nature of the Kerr curves ensures that we can ampelate this

em to all duct depths and gradients for this range of the parameter s. When s<-l or '-' 0. in

Is less accurate. but by [empirically] redefining f0, agreement can be recovered. This is a

question for further theoretical investigation.

Of the three analytical formulae. then. we can dismiss the Brekhovskikh constant as being a

less accurate formula. There is little to choose between the INSIGHT and Labianm upresslons
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regardtng agreement wth the numerical results. We prefer the INSIGHT decay constant.
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3.3 Empirleel Solutlone

Two semi-emptflcal decay constants are presented. one due to Bartberger (Ref 6. App J) and

derived from transmisslon lcss data generated by the normal mode computer model of

NAVAIRDEVCEN: the other to Spofford (Ref 7). and USed by the program FACT. They are.
respectlvely. tn decibels per yard.

 

1
ug- = Eng-“dam: “51

where

a = 3.7IH'/100)‘°‘ '5“ ' (17:)

b a 3.27:. + 0.79658'7” ' “"22": (17b)

with

a t
1 4 'H Ia: raving ] r; (18)

and. tn decibels per nautical mile.

(13 -— dB/nm. ‘ (19)
_ x4.s&105( r
- 2010510:

5 .1)1 .,

1000

Both expressions have units of)! In feet: q, tn fl a“: fin Hz; cl'. ca‘ tn 5". The Spofl'ord constant

ts tndependatt ofcl', and we assume that It Is dmved for an Isothermal duct. te cl'=0.016s'1:
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Bartberger specifies that his constant is derived for a duct with c:‘=0.lSs". They are therefore

somewhat limited in application.

Figure 3 shows can and as. along with a] and try. fora duct ofdepth 91m. gradients c1'=0.016 s'l.

c:'=O.Is". which apprordrnately satisfies the criteria for the empirical arpressiom, We can see

that while the Spofford curve agrees well with Voorhis at low frequency. it is too high at high

frequency. In dB units. this discrepancy can be accessive, espedally in shallow ducts because of

the H4 dependence. Bartberger‘s expression is an excellent fit to the Voorhis curve at all

frequencies for this duct. It is. however. constrained to the fixed gradient c1' = at s". Also. the

analytic upression for can. Eq (16). is highly unphysical - interpretation is difficult. For these

reasons we favour a. rather than the empirical constants.

t CONCLUSION

To sum up our logic. the numerical solutions on and av are unsuitable as predictive decay

constants because of their discreieness in the duct parameters. They do. however. serve as the

baseline by which to judge other decay constants. Of the analytical formulae. (:3 is inaccurate

at low frequencies. oL at very low frequencies. while a. is correct through and above cut-oil and

plausible elsewhere. The empirical formulae as and as. are discounted for having fixed

gradients and/or for being in bad agreement with the baselines. The INSIGHT upression

appears to be superior on all counts.

Further theoretical developments could lead to a decay constant for non-linear surface ducts.

and for underwater channels. One could also investigate the theoretical reason for the

necessary modifications of the cut-off frequency at small and large values of Isl perhaps using

exact Airy function eigenfunctions.
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L Ju hadlrin

Ocean. Acoustics Group, Department of Applied Mathematics and Theoretical

Physics. University of Cambridge, Cambridge, UK

I. INTRODUCTION

The knowledge of the acoustic ocean transfer function (OTF) can be of interest in communications and

When validating models ofoeeau environment. So far most authors, both those who employ ray-tracing and

those who do acoustic signal pmcmsing have considered the problem in the approximation of geometrical

optics. lt is well known that in this approximation the received signal (otherwise known as response)

can be modeled as the sum of attenuated and delayed copim of a transmitted signal (otherWise known

as signature). We have shown in hadkinfl] that formally the some is true in the presence of the first-

order difl’raetion effects (the parabolic approximation). The only difference is that in this case each of the

macropaths of the geometrical optics approximation is surrounded by a bundle of the so—called mieropolhs.

and the sum over all macro- and mieropaths can be viewed as an approximation to a corresponding (path)

integral. Thus, mathematically speaking, the response is a convolution of the signature with an (ocean)

transfer function.

 

It is also well known that in general, in the absence of further relevant information, the mathematical

problem of deconvolution (in this ease, identification of the ocean transfer function on the basis of signa-

ture/ruponse measurements) is ill-posed [2. 3]. However, for some typs of signal or noise, identification

can he achieved. For exampleI OTF identification can be carried out when the signature possmcs a band-

width comparable to that of the OTF and nearly flat density spectrum as in Williams and Battestin[4].

This method does not rely on geometrical optics approximation and is easily generalised to non-flat density

spectra. On the other hand, the restriction on bandwidth is crucial.

In this paper we discun some statistical and some physical considerations behind a novel approach to the

OTF identification in the framework of the lirst order difl'raction theory. The statistical considerations

are praented in full in Fradlrin[5], and the physical one in fiadkinn]. The signals considered contain

practically no low frequences and are broad-band. but we assume that their bandwidthn‘s considerably

smaller than the OTF's. We also mume that none of the paths deliver the signal with a reversed phase.

The above assumptions appear to be reasonable I prinri when, for example, only direct (deep sea)

paths are considered. In this paper we report the results of applying the method to a reprsentative

' signature/response pair collected during the Napoli 85 "um (see Uscinski et al.[6]). with the response

arriving along just such paths. The mumptions are validated n pastes-ion by showing that the resulting .

model is consistent 'with all the lrnown facts.

2. DESCRIPTION OF THE PROBLEM AND A GENERAL APPROACH TO ITS

SOLUTION

We have shown in FradlrinIl] that provided the Ocean is non-dispersive, weakly irregular, and no phase

reversal takes place during propagation.
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It:

i.=2x.s.,.ar+m. i=0,....1—1, (1)
II=NI

where I, N... and N. are natural numbers; the tilde. '. indicates the measured signals contaminated with
F(ti+.) is the response measured at the moment ti.” = (i + “An; Ar. is the sampling interval;

a“. 50m — 1-,.) tum) _ ..) is the signature measured or interpolated at the moment ti.” — r";
r.. — nAv is a delay In signal propagation; Ar is the interpolation interval; 5 is the interpolation factor
equal Ar./Ar; rr. ia the composite error at the moment fi-Hi KnAf is the unknown proportion ofsignature
arriving with delays in [r..,r.. — Ar],ao that

 

noise;    

ano. Vn=N...... N. (2)

and with large probability. the Li-norm for K.

N-

IIKIIIE 2 K.Arsa. (a)
n=Ns

where a is a number determined by the geometry of the problem and known a priori to data analysis.
The signature, 5. is assumed to be interpolated because often. and in particular in the case of the Napoli
85 "Dial. the resolution required for the ocean transfer function. K, is finer than the sampling interval for
E and 1".

The equation (1) describes ? as a (discrete) linear convolution of E with K. The prom of estimating K '
on the basis of (I) and known 5 and i is known as deconvolution. In general. deconvolution is an ill-posed
problem, meaning that its solution. R, is sensitive to high-frequency errors in i and i. It can be identified
only if some powerful physical constraints are used.

When dealing with aparticular deconvolution problem it is impossible to say a prior-i to data analysis what
particqu constraints may do the job. Several classes of constraints have been studied in the literature
(eg. Schafer et aI.[3].) The general approach can be dacribed as follows: to estimate K... n t [N.. M] one
has to minimise the cost function J. described in (AJ) under some constraints. The solution should be
u. . \Irnll' run-ugh lu lumluu- irnm-unl-Ir u-nuiunln null In W Inm-Imlul)‘ r'llIc to its a yrr'vn' estimate (ifauclr
is available). Also, it should bereasonably insensitive to various assumptions behind the mathematical
model. The measures of what is “reasonable” should be available a prim-i. otherwise the problem cannot
be solved. The requirements of accuracy and insensitivity are. as a rule. tontradictory. and one can claim
that the problem has been solved only if some trade-off can he achieved.

In this paper we dtscribe a method for estimating K. that is K..,n 1 [Nu N,] with N. and N; also unknown.
The only a priori mtriction on N. and N; is the following:

I < "0 < N. < 2;". (4)

It is assumed that for negative i’s the i{ are known (in our case we have taken them to be sero). The
method is based on minimisation ofthe cost function.

143 Proc.l.o.a. Vol 12 Part 1 (1990) 



  

Proceedings of the institute of Acoustics

IDENTIFICATION OF THE ACOUSTIC OCEAN TRANSFER FUNCTION

NI 3
(it - K. in. Ar)

n=N.

with respect to A’ and K under the Non-negativity constraint, (2), and the Bounded LI-norm constraint,
(3). Thejustification of the choice of the cost function (5) is given in i‘radkin[5]. Two additional constraints
are also employed. The first one is our estimate of the composite error variance:

1-!

’5:
i=0

N
+ A” Z Kgm,

n=N,
(5)

[—1 Ni ’
2(ri . E R, s”. Ar) 5:: 33‘ (6)
i=0 n=N.

The value of 3,2, is based on independent data analysis and is discussed in Fradlrin[5]. The second is the
estimate of the maximum probable spread of the OTF corresponding to a single macrapath,

(7)

The value of r. can be calculated by using physical considerations and ocean parameters as is done in
hadkinmr It is finite when the signals under consideration contain practically no law frequences. We call
it the Maximum Probable Time Delay along a Direct Ray hire and remark that it is akin to a Finite
Support constraint (see Schafer et al.[3].) In addition to the above constraints, we have used analysis
of reiduals (goodnma-of-fit) to assure that the estimated response reproduces the main features of the
measured pulse, i.

The computational procedure is based on the algorithm ofi'ered in Butler et ale [2] and is described in
hadkinfi} It is incorporated into the DECO package under the name of DECOP (for DECOnvolution for
Positive transfer functions).

8. DESCRH’TION OF THE EXPLORATORY SIGNAL PROCESSING PROCEDURE

The Napoli 85 'hial was conducted in the central 'I‘yrrhenian Sea in October 1985. Its full description can
he found in Usciualri et al.[6]. The ocean parameters were sudtthat at the distances of interest diffraction
was small but not always negligible'. The schematic geometry of the ’D'ial is presented in Fig. 1. The
signal measured at point 5 close to the source is referred to everywhere below as the signature and the
signal at point R is called response. A representative signature/response pair is shown in Fig 2, and their
discrete Fourier transforms, in Fig. 3. It is important to realise that all the signals were low-pass filtered
and then digitised by the hardware, so that they contain 1 = 49 discrete points sampled at an interval of

 

FIG. 3. A Iypieanilmrurelrspome pair._FIG. I. khan-tiemofihe Napoli I! Trial.
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A7. = 1/6 ms. The low-pass filter had a cut-off frequency of3 kHz and a very low accuracy between 2

and 3 His. We also have to emphasize that S does not lie on a ray connecting source to R, although it is

reasonably close to it.

ln order to identify the ocean transfer function from an i/ i pair we perform the following operations:

1. Pro-filter both i and i using a low—pass filter with the cut-off frequency of 2 kHz;
2. Interpolate both E and i using a spectral interpolator with the interpolation factor t9 = 20, making

the time unit, Ar = 1/120 moon
3. Set N. = 980, N, = 1099, and l7 = 0.0L

4. Optimize J in (5) using the above values and DECOP.

The resulting ocean transfer function is presented in Fig. 40:). It is non-negative and its Lx-norm.

N.
z KnAr s: 0.11. (3)
l|=Nn

The corresponding residual variance, 9,”, , is such thatthe relative errorI

3,”, e. 0.27, (9)

where
l [—1

or = [T gum - r

The shape of the function suggests the existence of two macropaths leading from the IO!!!“ ‘0 R. Wit-h "'9
maximum probable time delay along a direct macropath,

 

7;“, a: 4.10"» (An, = 5), (10) '

where An; is the width of the widest R-pealt in the interpolation time units (Ar = 1/120 The need
for pro-filtering and interpolation as well as the choice of the cost function .1, all the constraints, «\7. N.
sud N; are all justified in detail in Pradlrin[5] by exploratory data analysis. We only make the following
points:

1. The prefiltering is conducted, because the higher frequencea in i and i as measured during the Napoli
85 mar are heavily contaminated with noise, and K—estimata are highly sensitive to high frequency

errors.
. The interpolation ll conducted, since a much higher molution is required for R than for 5 and i.
. The above-value of N°(= til) is chosen on the assumption that the time of arrival of the response is
larger than the signal'a duration by at least Ar.

4. The above value of N, is chosen to be small enough to produce a smaller value of IIRIIII larger valua
of N1 lead only to the appearance of thin I‘tails" in the estimates of K (Fig. 4a), and by analyzing
simulated data we found such tails to be symptomatic of N1 being overestimated. 0n the other hand,
if N; was reduced any further to cut off the second peak in the OTF estimate, the fitting qualities
of the latter would suffer: in particular, the lrinlr before the second peak in Fig. 2h would not be
reproduced.

5. The above value of A’ is chosen so that the width of the first (widest) peak in Fig. 40:) can equal
the value n, in (10). With high probability, the latter can be considered to be the maximum probable
time delay in propagation of acoustic waves along the path S’R. as in Fig. I (see Fradhin[l]).
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n

150 - Proc.l.o.A. Vol 12 Part 1 (1990) 



 

Proceedlngs of the Institute ofAcoustlcs

IDENTIFICATION OI" THE ACOUSTIC OCEAN TRANSFER FUNCTION

«4
II

'I 0

0G

 

‘7'an “Ml: II) omega!” Elwin

Fm. J. Moduli w pm of nu Farrier compo-1m“ chum": m: (3)
response: m (i) maduwm Fourigrmmpemnuoll (in pix”: ofth
Foul-I" mpomu at r. (b) (i) muduli at m Fouricr :ompomu cf 1". min.
(ii) pm arm Fouriu :mpomu on.

an
I:
‘= a In .’M_¢__annuals tau us uns-Nun-l
m h)

i
n
n

6! u an I ‘
Mil-II

(b)
FIG. 4. Th: animus of K abllin'ed vilh DECOP “a m 1 = — om..v. - no. N. - m9; m A l - om. .v. =- m. .v. - m9.

Proc.l.O.A.Vol12 Pan 1 (1990) 151



Proceedings of the Institute of Acou'stlcs

IDENTIFICATION OF THE ACOUSTIC OCEAN TRANSFER FUNCTION

Although the true width of the first peak can be somewhat difi'erent, our numerical experiments have

shown that the general shape of R doa not change with A“. The numerical experiments have also

shown that )7 increases with 1-,, monotonically, so that the trial-and-error procedure required to find

the correct value of A7 is not subjective.

6. The Non-negativity constraint is used because it allows the resulting estimate of the CT? to have

a much higher frequency content (with the bandwidth of about 40 Hit) than that of signature and

response. For comparison, the estimate obtained by assuming A“ = 0 and using DECON (for DE-

CONvolution) - a routine in DECO minimising (5) without this or any other of the above constraints,

is prsented in Fig. 5. In this situation (5) achieve its minimum at

 

ii/fii. (11)

Where the star designates a Fourier component. It is interesting to note that the Fourier components

of the OT? estimates obtained with and without the Non-negativity constraint coincide on the 300

- 1700 Hz interval (Fig. 6). The fact that they do not match at small frequences is not suprising,

because hoth estimates fail there: the stimates obtained without the Non-negativity constraint.

because at thm frequences the Fourier components of i are too small (see (11) and Fig. 3a), and

the estimates obtained with theNonenegativity constraint because fa is estimated assuming that the

amount of energy at these ireqnences is negligible (see hadhinm). The fact that they do not match

at the higher frequenees is not unexpected either, because the first estimate fails there for the same

reason it fails at the smaller frequenm (Fig. 3a). The reliability_oi' the method incorporating the

Non-Regativity constraint has been tested by simulating a rsponse, i, on the basis ofs in Fig. 2a

and K in Fig. 4b, adding a random noise to both i and i, and applying DECOP to the resulting pair.

The outcome of these simulations can be seen in Fig. 7. ‘
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7. If there was only one maeropath between S' and R we would expect “th a: 0.1, since L’/L =1 0.1.

But the OT? estimate depicted in Fig 40:) suggests the existence of two macropaths. Therefore, it
is not surprising that a larger value appears in (13).

8. The relative error (14) seems a hit too large, but relative error is not a very good measure of fit when

a large proportion of the signal is relatively small. The raponse predicted on the basis DIE in Fig. 2a

and K in Fig. 4(b) actually fits the measured response rather well (Fig. 8). Also. it has been shown

in fiadltinfl] that the relative error of this order is easily attributable to the low-pass filtering and/or
positioning afthe portable array employed in the Trial. The asumptionn that K is a function of the

time diil'erence only involves a model error too. '
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4. DISCUSSION

It is well known that the problem of optimizing the cost function (5) His ill-posed in the sense that the

atimaleo are sensitive to errors in high frequencies. By conducting various numerical experiments with

our data we have established that they allow for a reasonably reliable identification procedure based on ‘

low-pass filtering and utilization of the Non-negativity, Bounded LI-norm and Maximum Delay along the

Direct Raytube constraints. The necessity for low-pass filtering was dictated by the recording peculiarities

of the Napoli 85 mn and is not expected to arise every time the propagation of acoustic pulse in studied

in the ocean. The Maximum Probable Time Delay along a Direct Rnytuhe constraint is believed to be

important only when working close to the geometrical optics limit, and it is applicable only when the signal

does not contain low frequences. However, the Non-negativity and the Bounded Ll-norm constraints can

have much wider applicability - in the situations whm the signals possess a narrower frequency band than -

the ocean transfer function.

The main conclusion from the exploratory analysis of the Napoli 85 data is the presence of the second

macropath. This can be validated independently on physical grounds by employing a model of the ocean

fluctuation! explaining them in terms of mixing intrusions [6, 1]. At first, we could not explain this result.

To elaborate, given spectra of medium fluctuations and some mean parameters one can assess whether the

uistence of the second maeropath is probable or not. Originally, it has been assumed that the medium

fluctuations in the 'Iyrrhenian Sea were determined mainly by the internal'waves. For the internal waves,

a spherical source and I. 2 LP, the noray-interaection criterion reads as follows:

o.1< p' > qL’L,L:' << 1. (15)

where < p’ > is the variance of the irregular rdraetive index; q is the signal'l wavenumber; L, is the

horitontal correlation strength (see Uacinski et al.[6]); and the numerical coeficient is due to the {act that
the source in spherical. By analyzing the environmental data it has been found that for the Napoli 85

'hial, < u' >= 0.5x10"; and by fitting the internal wava spectrum to these data the following catirnatel

have been obtained:
L. = 77 m, and L, = 1052 rn
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(B. J. Uscinski, pers. comm.) It is easy to checlr that for thme value andfrequeneea of about 1 ltliz,
criterion (15) is satisfied, and hence the appearance of the second macropath is highly improbable. However.

the detailed analysis has shown that the internal wava rmdel is inconsistent with the environmental data,

and a new model involving mixing intrusions has been proposed in Uscinslti et sJ.[6]. It is suggested that
the intrusions lead to the presence of a long thin structure at a 270 to 330 rn depth, with the speed of

propagation lower than in the host medium by about l m/sec. This sort of a quasi-deterministic structure
could well account for the existence of the secondary macropath mentioned above. Indeed, the preliminary

calculations of the difference in the times of arrival of the first and second peak in Fig. 4(b) are of

the correct order. This removes the original contradiction between the raults of our signal processing
procedure and the internal waves model of ocean fluctuations, and shows that in its turn, in the absence

of good environmental data, such a procedure could be used for model verification purposes.

As to the accuracy of the ocean transfer function atimstes, our experiments with simulated data suggest
that the amplitude of the ocean transfer function in Fig. 4(b) is off by approximately 20%. and the

accuracy of peak positions is ifi ms. The estimate of the OTF corrponding to the second macropath

is expected to be corrupted more than the first one.

The method described in this paper is being now applied to process all the relevant pulses transmitted in

the This], and the resulting conclusions will he reported shortly.
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