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L - INTRODUCTION

The extstence of underwater sound channels has long been lnown, and their ability to trap
. sound and so enhance long range propagation has been well studied (Ref 1, ppi47, and
references therein). It is equally well known that sound is not perfectly confined in these
waveguides and that a certain amount of acoustic energy leaks out of the duct, rendering them
tneffective at low frequencies. This leads to the concept of a cut-off frequency, below which
ducted propagation does not occur.

The amount of duct leakage is. as shown below. controlled by the imagmary part of the
herizontal wavenumber, the so-called decay constant. This is a difficult quantity to calculate.
An exact expression would require a complete analytical solution of the Helmholtz eigenvalue
problem, but unfortunately this has not proved possible. Numerical solutions to this problem
have been found for certain bilinear ducts (Ref 2, 3), but these are of Hmited application:
approximate analytic formulae have been obtained via the WKB method (Refs 4, 5], but these are
restricted to a Imited range of frequencies; and a varfety of empirical formulae exist (Ref 6, 7}, -
fited from physical or computer-generated data, but these too cannot be universally applied to
any duct.

In this paper, we present a new expression for the surface duct decay constant, based on the WKB
approximation (eg Ref 8, Ch 6.7) but extended to cover ali frequencies. It is valid for realistic
bilinear surface ducts, le, the gradients in and below the duct are of the same order of
magnitude, and it predicts leakage at all frequencies, both above and below a cut-off frequency
which arises from the derivation of the constant. As such, it is an improvement on existing
ll-lt:lgll‘(l:’ll-lerel pads_ g;e shall demenstrate. This constant is used In the propagation loss model

2 INSIGHT DECAY CONSTANT
21 Formulation

The INSIGHT decay constant at frequency [ for a duct of depth H, surface sound speed ¢;. and
sound ggced gradients In and below the duct of magnitude ¢;', ¢g', is given in units of nverse
length

1
a = i[_c;_]' BN . (1
4\ 2coH
where
antin (210 (2a)
B0 = ax[cnr -« ten] €51 (2b)

Proc.l.O.A. Vol 12 Part 1 (1950) 139 =




P;_;ocee'dings of the Institute of Acoustics

A REVIEW OF SURFACE DUCT DECAY CONSTANTS

and where
3 13 ‘
(= [(f/fo)’ : 1] : £2 16 . (3a)
d
i = d_Icm' (3b)

Also, fp. which will be interpreted as the cut-off frequency. and {; are given by

3
9 i
fn=—01'( 2 ) s ‘ (4
8 2¢;'H

a . . '
fi =fo(l+§l91:l'5)-' 1.16 fg. . : &

(Throughout this paper, decay constants are denoted by a, with a subscript to indicate the
author or model)

22 Derivation

The well-known normal mode solution for the acoustic pressure field is (Ref 9, pl22), using the
asymptotic form of the Hankel function, and with a complex horizontal wavenumber x; =
Entiay,

1Ear

L3
p = @ut13 Y bnlze) bnlerle ™ ——— 7
n ("nl')

Each mode of the field decays exponentially at a rate given by @ty Hence we identify the decay
~ constant of the n'th mode with the imaginary part of its horizontal wavenumber. In what

follows we shall assumne that 1o, l<<iE,l and so Ixp )2 ~ Eq2, Also, for the small grazing angles of
rays in a surface duct, k2 - Ixq (2. :

Substituting the approximate fdentity

Imixa?
21, ¢

dn = lml*ﬂ) -

Into the WKB approximation (Ref 2, Sec 2.8, Eq 278)

imie, 3| . e 2hE frole) 1
%o kb,
we obtain
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e-nl.'g; In{z] | dx )
ap = ——————, s
2L

where T, 15 the vertical wavenumber, I'y the cycle distance, and z)5. 225 the modal turning
points.

Now, as frequency is increased from zerc in a surface duct. the channe] will start to support a
mode structure. The first mode to be trapped as frequency Increases is the lowest order (n=1)
mode of Eq 6; at higher frequencies, higher order modes also become trapped, and the duct is
referred to as cut-on. From the point of view of duct leakage. the critical freguency is that at
which just one mode ts trapped and dominates the sound Intensity. Accordingly, we shall
concentrate on this first mode only. and Its attenuation constant a) will be referred to as the
decay constant of the duct.

Specialistng to the bilinear duct with wavenumber profile

. ko (1-E2) 0Sz$H
Kmad .. m
ky' (1432 -m)  z2H
the exponent of Eq (6) becomes. to first order in ¢, ¢;' (dropping the n=1 subscript)
vt 1dz = 1% [l + -I-J[(x‘ keo?) + (e - kD JF @
1 31:02 ¢’ o'

The first eigenvalue is given by the WKB approximation (Ref 9 Eq (6.7.10), p132) as
Onc 'ko’ ;

koz-x2=(— L ] ©
4 ¢o-

Using Eq (9) In Eq (8) gives

3
-zj'" Iviz) 1 dz = 3 (l+c|‘fcz')[(flfo)§-- 1]’ f2f (10)
1 2 .

As we shall discuss in Sec 3.2, fp is the dominant parameter In this expression, and gradient
dependence should be contained within it. Thus, we can approximate (1 + ¢1'/¢2) by 2, i, put cg’
' = )", which i3 approximately true for realistic ducts, with little error to oy.

The cycle distance for a ray of surface grazing angle 6 Is

Fe 20 ang s 220 26121 1)
' o' ca
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For rays trapped in the duct, the turning point z;. at which ¥(z,)=0. satisfles z) s H. We shall use
z1=H in this expression at all frequencies. This glves Improved behaviour at low frequencies,
i.e. a non-zero constant at f = 0, and induces little error since the exponent is the dominant
factor. Substituting Eqs (10), (11) into Eq {6) gives the expression

L e
@ = oy L eI (12)
41 2¢gH

This WKB expression Eq (12) is shown in Figure 1. It has two obvious defects; it holds for
inflecticn at f=fy. Both these defects arise because of the nature of the function {(f), and we seek

to medify { as a cure. ot
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We accept Eq (12) for the reglon {5f; where the gradient of a is increasing; at f=f), the gradient of
a is a minimum, Attempting to reproduce the Kerr curves of Sec 3.1, we wish 0 avoid the
decreasing gradient for f<f;, and so we choose to adopt a linear continuation of {(f) for
frequencies {<fy, centinuous in both value and gradient at f=f;. That is, if we define the function
i as tn Eq(2). then we redefine the decay constant to be

Y B B0, (13

4y 2¢gH

Elementary calculus shows that f | must solve

2 ! 1
9n[(r1 /1) - 1]’ {fi 76} -1=0,

and Eq{5} gives the approximate unique solution of this.

This continued expression Eq (13} 13 also plotted In Figure 1. We can see that we have sclved . -

both problems: a; has a monotonic gradient (as does f), and is defined for all frequencies.

We interpret f as the cut-off frequency of the duct. This is because the function {{f) appearing in
- the definition of a; (Eq 3a) is defined only for f>fp. At this frequency, {=%. and the WKB
expression. Eq (13), gives a decay constant of 1/(2F) or a pressure decrease of 1/¢ every ray cycle.
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One can also show that fg is the frequency at which the WKB eigenvalue is equal to the
wavenumber minimum, x?=ky?; or equivalently, at which the modal turning point Is at the
duct bottom. fe, z)=H.

3 COMPARISC_)N WITH OTHER DECAY CONSTANTS

Having presented the INSIGHT decay constant, It is time to discuss its accuracy. A varety of
alternative expressions for the decay constant exist, and we present a survey of some of these
here. This Is by no means exhaustive. but it provides a framework In which to Judge the validity
of a;. Classifying these alternative expressions as numerical, analytic and semi-empirical, we
proceed to a step-hy-step justification of gy

31 Exact Numerical Solutions

Kerr (Ref 2. p161, Fig 2-30) displays curves of attenuation constant C=2alq;2ke)"!/3 against
anomaly height g=Hiq ko2) 1/3, [q=2c; /gl for a discrete set of values of 5=-(c; /31173, These
curves are obtained by numerical solution of the exact eigenvalue problem, and have Lhe
property that they give the decay constant ok for any duct with the given s, fe, variable ¢;’, ¢’ H
such that ¢;'/cg'=-s7. There 1s some scale invariance in the problem, which Is characterised by
the dimensionless parameters C and g. These quantities have the useful property that the cut-
off frequency f, corresponds o the constant value g=(9n/8)2/2 =2.32.

We consider these curves as giving the correct decay constant, and bein‘g the result with which to
compare all other decay constants. However. they do have drawbacks: they are not curves of
analylic expressions and they are Hmited to the values of s given: In Ref 2. Surface ducts must
have s<0, and realistic surface ducts have ¢g' > ¢;'. le -1 <5 < 0, but Kerr gives no curves for this
range of s. Interpolation in s is ruled cut as we do not know the s dependence. There Is no
reason to suppose a linear dependence; it Is likely to be more complicated than this. Thus we
are forced to find alternative representations of the decay constant.

Another numerical solution for the constant Is given by Voorhis (Ref 3). again in the form of a
set of curves, for various realistic discrete values of H, ¢;' and c2'. These do not explicitly exhibit
the dimensionless behaviour of the Kerr graphs. but plot instead oy lin dB/kyd] against
frequency for different duct parameters. The Voorhis s=-1 curves agree perfectly with ag at s=-1

(see Figure 2). Thus. these curves also provide essential checks on any analytic expression, but
. suffer from the same drawback as the KerT curves when being constdered as predictive tools.

32 Analytic Solutions

Analytic appreximations to the numerical solutions are obviously desirable. We present three
such, and compare them with the exact solutions,

3.2.1 INSIGHT

This is given by Eq (1) above.

322 Llablanca

Lablanca gives a decay constant {Ref 4, Eq 31c) which, in our notation, reads

ANF L), 0 ‘
E N IR U - (- LI
2ol 9
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We extend this to the whole frequency range in the same manner as for q;, ie. replace the
function L(f) by pih, giving :

2N5 1 {14 0)p0 '
oy = _]-'—.— [ﬂ..] rse 1(1* “1')B ] (14)
9

2co

323 Brekhovsklkh

Brekhovskikh derives an energy reflection coefficient for the bottom of a surface duct [Ref 5. Eq
24.32. 24.42), .

2B -1
R? = (1 ve 253 Iyl) | d:)

in our notatlon. Equating this reflection coeflicient to a corresponding decay term in the
intensity, fe. R0 = e'2°" where nis the number of reflections, n=r/I", we obtain

1 YL
a= —ln(l-re 243 Iviz) Idz) .
ar

This can be evaluated in the same way as Eq (6) arid extended to all frequencies giving
1 H1e 2 Jmn
ag = —In|l+e ’( Yo )B (18
2r

We now have three analytical expressions for the decay constant - qj, @y, ag - to conipare with
the numerical solutions cg. &v.

Figure 2 displays all five constants for a duct with H = 91m, €1’ = ¢z' = 0.02s°], le s=-1, (Of course,
ag depends only on s, not the precise values of H, ¢y’ cg’. but this is not 5o for the other
constants.] The numerical curves og, ay are in good agreement, as we would expect for exact
solutions. Of the analytical curves, o; and o, agree well with the Kerr curve; ap diverges for low
values of anomaly height, though agreement is good above the cut-off frequency, at g=(98/8)3/3,
At s=-1. then, both INSIGHT and Lablanca constants scem accurate.

Physical values of s are used for the Voorhis curves, and the analytical formulae can be
compared agatnst these. Figure 3 shows curves for a duct with H=91m, c,'=0.025"1, 0g'=0.055'L, te
s=-0.74. This time the numerical curve appears shifted to the right, and the analytical curves
are lttle changed from their s=-1 values. Agreement is still good. Comparisons with Voorhis
curves at other values of H, ¢;* and ¢z’ show simifar agreement, provided s 1s not too small or too
large in magnitude. The universal nature of the Kerr curves ensures that we can extrapolate this

ent te all duct depths and gradients for this range of the parameter 3. When s<-1 or¥ 0, o
Is less accurate. but by (empirtcallyl redefining fp. agreement can be recovered. This is a
question for further theoretical investigation.

Of the three analytical formulae, then, we can dismiss the Brekhovskikh constant as being a
less accurate formula. There is little to choose between the INSIGHT and Labjanca expressions
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regarding agreement with the numerical results. We prefer the INSIGHT decay constant.
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33 Empirical Solutions

Two sem{-empirical decay constants are presented, cne due to Bartberger (Ref 6, App J) and
dertved from transmission loss data generated by the normal mode computer model of
NAVAIRDEVCEN; the other to Spoflord (Ref 7). and used by the program FACT. They are,
respectively, in dectbels per yard,

1
apa = ﬁﬁn'bds/)’d (16)
where
a=237(H/100°01588 - (17a)
b= 3.27n +0.7065¢2 78n - 10.422n" (17b)
with
o\t

4f2c) HY?

n=£+5(%] f; (18}

and, in decibels per nautical mile,

dB/nm. : ns

1
. _14.33:105( f )-éc,-'i
% = S0logee \1000) H3

Both expressions have units of H in feet: o in ft 8°1; in Hz; ¢)". ¢2' in s"l. The Spofford constant
is independent of ¢|', and we assume that it 15 dertved for an isothermal duct, fe ¢'=0.016s°%;
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Bartberger specifies that his constant 1s derived for a duct with c2'=0.15s"1, They are thercfore
somewhat limited in application. :

Figure 3 shows ag, and ag, along with o and ey, for a duct of depth 91m, gradients cy'=0.016 5°},

cg'=0.15"1, which approxdmately satisfles the criteria for the empirical expresslons. We can see
that while the Spofford curve agrees weil with Voorhis at low frequency, it is too high at high
frequency. In dB units, this discrepancy can be excessive, especially in shallow ducts because of
the H-3 dependence. Bartberger's expression is an excellent fit to the Voorhis curve at all
frequencies for this duct. 1t Is, however, constrained to the fixed gradient e3' = 0.1 s°1.  Alsa, the
analylic expression for aga, Eq (16), is highly unphysical - interpretation is difficult. For these
reasons we favour o rather than the empircal constants.

4, CONCLUSION

To sum up our logic, the numerical solutions ax and oy are unsuitable as predictive decay
constants because of their discreteness in the duct parameters. They do. however, serve as the
baseline by which to judge other decay constants. Of the analytical formulae, ap is inaccurate
at Jow frequencies, o at very low frequencies. while @ 1s correct through and above cut-off and
plausible elsewhere. The empirical formulae as and ag, are discounted for having fixed
gradients and/or for being in bad agreement with the baselines. The INSIGHT expression
appears to be superior on all counts. :

Further theeretical developments could lead to a decay constant for non-linear surface ducts,
and for underwater channels. One could also investigate the theoretical reason for the
necessary modifications of the cut-off frequency at small and large values of Is| perhaps using
exact Alry function eigenfunctions.
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L Ju Fradkin

Ocean Acoustics Group, Department of Applied Mathematica and Theoretical
Physics, University of Cambridge, Cambridge, UK

1. INTRODUCTION

The knewledge of the acoustic ocean transfer function (OTF) can be of interest in communications and
when validsting models of ccean environment.” So far most authors, both those who employ ray-tracing and
thasa who do acoustic signal processing have considered the problem in the approximation of geometrical
optics. It is well known that in this approximation the received signal (otherwise known as response)
can be modeled as the sum of attenuated and delayed copies of a transmitted signal (otherwise known
as signature). We have shown in Fradkin[1] that formally the same is.true in the presence of the first-
order diffraction effects (the parabolic approximation). The only difference is that in this case each of the
macropaths of the geometrical optica approximation is suzrounded by a bundle of the so-called micropaths,
and the sum over all macro- and micropatha can be viewed as an approximation to a corresponding (path)
integral. Thus, mathematically speaking, the response is a convolution of the signature with an (ocean)
transfer function.

It is also well known that in genetal, in the absence of further relevant information, the mathematical
problem of deconvelution (in thie case, identification of the ocean transfer function on the basis of sigha-
ture/response measurements} is ill-posed (2, 3). However, for some types of signal or aoise, identification
can be achieved. For example, OTF identification can be carried out when the signature possesses a band-
width comparable to thet of the OTF and nearly flat density spectrum es in Williams and Battestin[4].
Thie method does not rely on geometrical optics approximation and is easily generalized to non-flat density
spectra. On the other hand, the restriction on bandwidth is cracial.

In this paper we discuss some statistical and some physical considerations behind a novel approach Lo the
OTF identification in the framework of the first order diffraction theory. The statistical considerations
are presented in full in Fradkin[5], and the physical ones in Fradkin[l]. The signals considered contain
practically no low frequences and are broad-band, but we assume that their bandwidth-is considerably
smaller than the OTF’e. We also assume that none of the paths deliver the signal with a reversed phase.
The above assumptions appear to ba reasonable a  priori when, for example, only direct {deep sea)
paths are considered. [n this paper we report the results of applying the method to a representative
" signature/response pait <ollected during the Napoli 85 Triel (see Uscinski et al.[6]), with the response

arriving along just such paths. The assumptions are validated o posieriori by showing that the resulting .

model i3 consistent with al} the known facts.

2. DESCRIPTION OF THE PROBLEM AND A GENERAL APPROACH TO ITS
SOLUTION

We have shown in Fradkin[l] that provided the ocean it non-dispersive, weakly irregular, and no phase
reversal takes place during propagation,

Proc).0.A, Vol 12 Part 1 (1990)
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Ny
iz Y KnBin At i=0,...,1-1, (1}

n=N,

where I, N, and N, are natural numbers; the tilde, , indicates the measured signals contaminated with
noise; f; = F(ti41) is the response measured st the moment by = (i + I)An,; Ar, is the sampling interval;
&n = 8(tip1 = 7)) = B{tp(i4ry) - o) in the signature measured or interpolsted at the moment tiy — 7o;
T, = nAr is a delay in signal propagation; Ar is the interpolation interval; # is the interpolation factor
equal Ar,/Ar; 5; is the composite error &t the moment ti,1; KnAr is the unknown proportion of signature
arriving with delays in [r,, 7, — A7), 50 that

Kn20, ¥a=Ns..., N (2

and with large probability, the L;-norm for K,

N,
IKh= Y KaAr < e, (3)

n=N,

where o is a number determined by the geometry of the problem and knowa a priori to data analysis.
The signature, 8, is assumed to be interpolated because often, and in particular in the case of the Napoli
85 Trial, the resolution required for the acean (ransfer function, K, is finer than the sampling interval for
 and F. '

The equation (1) describes f as a (discrete) linear convolution of § with K. The process of estimating K
on the basis of (1} and known § and T is known as deconvolution. In general, deconvolution is an ill-posed
problem, meaning that its solution, K, is sensitive to high-frequency errors in § and F. It can be identified
only if some powerful physical constraints are used.

When dealing with a particolar deconvolution problem it is impossible to say a priori to data analysis what
particular constraints may do the job. Seversl classes of constraints have been studied in the literature
(e.g- Schafer et al.{3).} The general approach can be described as follows: o estimate Ky, n ¢ [No, Ny] one
has to minimize the cost function J, described in (A.1) under some constraints. The solution should be
wowate caciigh B pedoee reanonatile cesiduals did te S ressanably cluse o ils g priers estiniate (il such
is vvailable). Also, it should be reasonably insensilive to various assumptions behind the mathematical
model. The measures of what is “reasonable” should be available ¢ priori, otherwise the problem cannot
be solved. The requirements of accuracy and insensitivity are, as a rule, contradictory, and one can claim
that the preblem has been solved only if some trade-off can be achicved.

lu this paper we describe a method for estimating K, that is Ky, n ¢ [N, N;] with N, and Ny also unknown.
The only @ priori restriction on N, and Ny is the following:

1< Ny <Ny <2l ()

It is assumed that for negative i’s the § are known (in our case we have taken them 1o be rero). The
method is based on minimization of the cost function,
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I-1 N, 2 N,
3 sz(f-. : Ko &in Ar) + X Y Klar (5)

i=0 n=N, n=N,

with r&pect to A? and K under the Non-negativity constraint, (2), and the Bounded Ly-norm constraint,
(3). The justification of the choice of the cost function (5) is given in Fradkin[5]. Two additional constraints
are also employed. The first one is cur estimate of the composile error variance:

I-1 N, 2
3 (1‘-; - ¥ Kag, Ar) = & .7 (6

i=a n=N.

The value of 53 is based on independent data analysis and is discussed in Fradkin[5]. The second is the
estimate of the maximum probable spread of the OTF corresponding to a single macropath,

Trax = To- )

The value of 7, can be calculated by using physical considerations and ocean parameters az is done in
Fradkin(1]. It is finite when the signals under consideration contain practically no low frequences. We call
it the Maximum Probable Time Delay slong a Direct Ray Tube and temark that it is akin to a Finite
Support constraint (see Schafer et al.[3).) In addition to the above constraints, we have used analysis
of residuals (goodness-of-fit) to assute that the estimated response teproduces the main features of the
measured pulse, . '

The computational procedure is based on the algorithm offered in Butler et al. [2] and is described in
Fradkin[5]. It is incorporated into the DECO package under the name of DECOP (for DECOnvolution for
Positive transfer functions).

3. DESCRIPTION OF THE EXPLORATORY SIGNAL PROCESSING PROCEDURE

The Napoli 85 Trial was conducted in the central Tyrrhenian Sea in October 1985, Its full description can
be found in Uscinski et al.[8]. The ocean parameters were guch that at the distances of interest diffraction
was small but not always negligible?. The schematic geometry of the Trial is presented in Fig. 1. The
signal measured at point S close to the source is referred to everywhere below as the signature and the
signal at point R is called response. A representative signature/response pair is shown in Fig. 2, and their
discrete Fourier transforms, in Fig. 3. It is important to realize Lthat sl the signals were low-pass filtered
and then digitized by the hardware, g0 that they contain I = 49 discrete points sampled at an interval of

3 ," “ ]\‘ﬁ, g | vﬁ‘j"'f"“"—
0t LY ) j

F10. 1. Schematic geometry of the Napoli 89 Trial FIG. 1 A rypical signasture/response pair.
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Ar, = 1/8 ms. The low-pass filter had a cut-off frequency of 3 kHz and a very low accuracy between 2
and 3 kHz. We also have to emphasize that § does not lie on a ray connecting source to R, although it is
reasonably close to it. .

In order to identify the ocean transfer function from an &/ pair we perform the following cperations:
1. Pre-filter both & and F using a low-pass filter with the cut-off frequency of 2 kHz;
2. Interpolate both & and F using a spectral interpolatar with the interpoletion factor § = 20, making
the time unit, A7 = 1/120 msec. ’
3. Set N, = 980, N; = 1099, and A = 0.01.
4. Optimize J in {5) using the above values and DECOP.

The resulting ocean transfer funclion is presented in Fig. 4(b). It is non-negative and its Ly-norm,

N,y
Y KaAr= 017, {8)
n=N,

The corresponding residual variance, 3,’, , is such that the relative error,

&p/or 2 0.27, (9

where .

PR a2 1=
= = _ ol =13z

o5 = [TZ(ri—r) 114 andf = PP

) i=0 i=0

The shape of the function suggests the existence of two macropaths leading from the source to R, with the

maximum probable time delay along a direct macropath,

7o, = 4.107% (Any = 5), (10)
where An; is the width of the widest R-peak in the interpolation time units (Ar = 17120 msec). The need
for pre-filtering and interpolation as well as the choice of the cost function J, all the constraints, A3, N,
and N; are all justified in detail in Fradkin[3] by exploratory data analysis. We only make the following
points:

1. The pre-filtering is conducted, because the higher frequences in 5 and f as measured during the Napoli
85 Trial are heavily contaminated with noise, and K-estimates are highly sensitive to high frequency
€r1ors.

. ‘The interpolation is conducted, since & much higher resolution is required for X than for § and f.

. The above-value of No{= JI) is chosen on the assumplion that the time of arrival of the response is

larger than the signal's duration by at least Ar.

4. The above value of Ny is chosen to be small encugh Lo produce a smaller value of ||K|[y; larger values
of Ny lead only to the appearance of thin “tails” in the estimates of K (Fig. 4a), and by analyzing
simulated data we found such tails to be symptomatic of Ny being overestimated. On the other hand,
if N1 was reduced any further to cut off the second peak in the OTF estimate, the fitting qualities
of the latter would suffer: in particular, the kink before the second peak in Fig. 2b would not be
reproduced.

5. The above value of A? is chosen so that the width of the first (widest) peak in Fig. 4(b) can equal
the value r, in (10). With high probability, the latier can be considered ta be the maximum probable
time delay in propagation of acoustic waves along the path 5'R as in Fig. 1 (see Fradkin[1]).

o b3
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Although the true width of the first peak can be somewhat different, our numerical experiments have
shown that the general shape of K does not change with A2, The numerical experiments have also
shown that A7 increases with 7, monotonizally, so that the trial-and-error procedure required to find
the correct value of A? is not subjectivé, :

6. The Non-negativity constraint is used because it allows the resulting estimate of the OTF to bave
a much higher frequency content (with the bandwidth of sbout 40 kHe) then that of signature and
response, For comparison, the estimate obtained by assuming 3? = { and using DECON {for DE-
COMNvolution) - a routine in DECO minimising (5} without this or any other of the above constraints,
is presented in Fig. 5. In this situation (5) achievea its minimum at

Ki =% /8, (11)

where the star designates a Fourier component. It is interesting to note that the Fourier components
of the OTF estimates obtained with and without the Non-negativity constraint coincide on the 300
- 1700 Hz interval (Fig. 6). The fact that they do not match at small frequences is not suprising,
becauss both estimates fail there: the estimates obtained without the Non-negativity constraint,
because at these frequences the Fouriér components of § are too small (see {11) and Fig. 3a), and
the estimates obtained with the Non-negativity constraint becauss 1, is estimated assuming that the
amount of energy at these frequences is negligible (see Fradkin[1]). The fact that they do not match
at the higher frequences is not unexpected either, because the first estimate fails there for the same
reason it fails at the smaller frequences (Fig. 3a). The reliability of the method incorporsting the
Non-negativity consiraint has been lested by simulating a response, #, on the basis of & in Fig. 2a
and K in Fig. 4b, adding a random noise to both f snd §, and applying DECQP to the resulting pait.
The cutcome of these simulations can be seen in Fig. 7. :
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7. 11 there was only one macropath between $' and R we would expect {|K||; = 0.1, since L'/L = 0.1
But the OTF estimate depicted in Fig. 4(b) suggests the existence of two macropaths. Therefore, it

" js not surprising that e larger value appears in (13).

8. The relative error (14) seems a bit too large, but relative error is not a very good measure of fit when
a large proportion of the signal is relatively small. The response predicted on the basis of § in Fig. 2a
and K in Fig. 4(b) actually fits the measured response rather well (Fig. 8). Also, it has been shown
in Fradkin[5] that the relative error of this order is easily attributable to the low-pass filtering and/or
positioning of the portable array employed in the Trial. The assumptionn that K is a function of the
time difference only involves a model error too. ’
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4. DISCUSSION

It is well known that the problem of optimizing the cost function (5) is ill-posed in the sense that the
estimates are sensilive to errors in high frequencies. By conducting varions numerical experiments with
our data we have established thet they allow for a reasonably reliable identification procedure based on
low-pass filtering and utilization of the Non-negativity, Bounded Ly-norm and Maximum Delay along the
Direct Raytube tonstraints. The necessity for low-pass filtering was dictated by the recording peculiarities
of the Napeli 86 Trial and is not expected to arise every time the propagation of acoustic pulses is studied
in the ocean. The Maximum Probable Time Delay along a Direct Raytube constraint is believed to be
important only when working close to the geometrical optics limit, and it is applicable only when the signal
does not contain low frequences. However, the Non-negativity and the Bounded L;-norm constraints can

have much wider applicability - in the situations where the signals possess a narrower frequency band thao -

the ocean transfer function.

The main conclusion from the exploratory analysis of the Napoli 85 data is the presence of the second
macropath. This can be validated independently on physical grounds by employing a model of the ocean
fluctuations explaining them in tertns of mixing intrusions [6, 1]. At first, we could not explain this result.
To elaborate, given spectra of medium fluctuations and some mean parameters one ean assess whether the
existence of the second macropath is probable or not. Originally, it has been assumed that the medium
fluctuations in the Tyrrhenian Sea were determined mainly by the internal waves. For the internal waves,
s spherical source and L > L, the no-ray-intersection criterion reads as follows:

0.1 < p? > qliL L1 << ], {15)

where < p* > is the variance of the irregular refractive index; q is the signal’s wavenumber; Ly is the
horizontal correlation strength (see Uscinski et al.[6]); and the numerical coefficient is due to the fact that
the source is spherical. By analyzing the environmental data it has been found that for the Napoli 85
Trial, < g7 >= 0.5x10~% and by fitting the internal waves spectrum to these data the following estimates
have been obtained:

Ly=7Tm, and L, = 1052 m
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{B. 1. Uscinski, pers. comm.) It is easy to check that for these values and frequences of about 1 kHz,
criterion {15) is satisfied, and hence the appearance of the second macropath is highly improbable. However,
the detailed analysis has shown that the internal waves model is inconsistent with the environmental data,
and a new model involving mixing intrusions has been proposed in Uscinski et al.[6]. It is suggested that
the intrusions lead to the presence of a long thin structure at a 270 to 330 m depth, with the speed of
propagation Jower than in the host medium by sbout I m/sec. This sort of & quasi-deterministic structure
could well account for the existence of the secondary macropath mentioned above. Indeed, the preliminary
calculations of the difference in the timea of arrival of the first and second peak in Fig. 4(b) are of
the correct order. This removes the original contradiction between the results of our signal processing
procedure and the internal waves model of ocean fluctuations, and shows that in its turn, in the absence
of good environmental data, such a procedure could be used for model verification purposes.

As to the accuracy of the ocean tranefer function estimates, our experiments with simulated data suggest
that the amplitude of the ocean transfer function in Fig. 4(b) is off by approximately 20%, and the
accuracy of peak positions is ii‘i ms. The estimate of the OQTF corresponding to the second macropath
is expected to be corrupted more than the first one.

The method described in this paper is being now applied o process a.l] the relevant pulses transmitted in
the Trial, and the resulting ¢onclusions will be reported shortly.
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