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Introduction

A set of low-frequency crossover alignments is described that exhibit composite all.
pass characteristics but have individual high-pass and low-pass transfer functions of
different order. 0f specific interest is the alignment using a first-order, high-pass filter
although more general. higher-order asymmetric alignments are also discussed. This
work is presented for two reasons. first the existence of asymmetric filters generaliscs
the already well documented crossovers belonging to the all-pass family and secondly.
the application of this class of filter to low-frequency, crossover design can represent a
significant simplificaan in network topology. However. the main application regime is
restricted to low uency primarily because of asymmetric phase response and the
association of lobing errors [Lipshitz et al 1983] when there are significant time delays
between drive unit acoustic centres.

As an example. a basic scheme is described in Section 3 that combines a broad
bandwidth loudspeaker with a subvwoofer. The system uses a first-order network in the
satellite loudspeaker channel yet accommodates a second-order network of lower cut-
off frequency in the subwoofer feed to enhance suppression of high frequency signal
components.

Review of crossover systems

Crossover systems can be sub-divided into three broad categories. namely: constant
voltage. delayed derived and all-pass.

Constant voltage

For a two.way crossover with high- and low-pass transfer functions AH(s), AL(s) a

. constant voltage filter [Small 1971] is defined as:

AH(s) + AL(s) = l l l

The most common alignment of this class is the first-order system where.

  

as

All“) _ 1 + as

l

AL“) _ l +as

for which the solution is exact and both filters exhibit equal rates of attenuation.
However. asymmetric. higher-order. constant-voltage alignments also exist. where for
example.
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ie at low frequency, AH(s) 4 als and corresponds to a pseudo, first-order response.

Delay derived

Delay—derived filters [Lipshitz eta! 1983] are not well suited to analogue applications as
tltey effectively combine s-domain and z—domain techniques. Their main application is
in digital crossover filter design [Bews 1987] where a prototype low-pass filter is
specified and evaluated using for example a Parks McClellan optimisation [McClellan

1973} or Kaiser Window procedure and a complementary. high-pass filter derived.
Specifying filters in the z-domain gives.

AH(z) + ALCZ) = 2”” l 2

where z” is the filter duration. Such filters are not well matched to the synthesis of
low-frequency analogue fillets due to the excessive number of coefficients N required
to accurately approximate the impulse response.

Symmetric, all-pass crossover function

The class of symmetric all-pass crossover has found relatively wide application
particularly in active loudspeaker systems where filter realisation is well suited to

operational amplifier circuits [Bohn 1983. Hawksford 1988].

This group of filters is described by, ,

P (-s)
kAH(s) + AL(s) = PH“)

. 1.3

where Pn(s) is a general polynomial of order n, and k is either 1 or -1 depending upon

system order and alignment.

Four common examples occur from order l to 4. though the existence of higher-order
alignments is recognised [Bohn 1988].

(i) First order

1

1+

as

l+as'

  

AH(s)= AL(5)=
as

whereby
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l-as

AL“) _ AH“) = 1 + as

 

However, by inverting the hf channel, the first-order, constant-voltage crossover
emerges. hence the all-pass alignment has minimal advantage, other than demonstrating
a tolerance to wiring enors in loudspeaker assembly.

(ii) Second-ordert lf,

2 2

 

a s lAH(s) =— , A,_(S) =——2
(l + as) (I + as)

then _

l - as

AL“) - A“(S) _ l + as

(iii) Third-order. lf.

3 J
a S

AH(s) -

 

(1 + as + azsle + as)

l 

  

A (s)=L (1+ as + azslxl + as)

then,

2 2
ALGHAHG): I-as+a s

2 2
l + as + a s

and

l - as

AL(S) ' All“) _ l + as

again the odd-order alignment exhibits a tolerance to hf channel inversion. although the
first-order. all-pass offers the best composite alignment due to reduced group-delay
distonion.

(iv) Fourth-order. The best known fourth-order alignment is the Linkwilz-Riley LR-4
[Linkwitz 1976]. where

4 4
as l

. AL=2 2
(l+fias+a252) (l+fias_+azsz)

  

An“) =

and,

1-112 1: + azsz
AL“) + A”(s) = “ t

22
l+flas+as
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Asymmetric, all-pass alignments

The general expression for an all-pass alignment was given by equation 1.3. To
develop a method for identifying asymmetric crossovers we express the transfer
functions AL(s), AH(s) as

 

_ LN(s) _ HN(s)
Ads) - LS—(s) - AH“) - HD(s)

where from equation 1.3

k HN(s) + LN(s) _ Pal-5)

   

HD(s) LD(s) ‘ Pn(s)

Rearranging in temts of the LPF numerator polynomial LN(s).

LD(s) [Pn(-5)HD(s) . kPn(s)l-lN(s)]-
Pn(s)HD(s)LN(s) =

Since LN(s) is a polynomial of finite order then.

LD(s) = Pn(s)l-lD(s) . 2.l

and,

LN(s) = Pn(-s) HD(s) -- kPn(s)llN(s) ..2.2

Hence by specifying both the high-pass filter denominator polynomial and the
polynomial Pn(s), the transfer function of the corresponding the low—pass filter can be

derived. The following subsections describe a range of crossover examples where the
orders of LD(s) and HD(s) differ:

First-order, high-pass filter with polynomial Pn(s) of order N.

In-this first class of asymmetric filter. the high-pass filter is defined as first order
where.

  

A bls

"(s)" 1 +b,s -
. . .2.3

thatis

HN(s) =bls

HD(s)=1+ his

The polynomial Pn(s) of order n is expressed as.
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Pn(s) = : a‘s'

[=0 . 244

whereon the denominator of the low-pass filter LD(s) follows from equation 2.1.

LD(s) = (1 + bis) : arsI

' ' ’ ° . . . 2.5.

In evaluating the numerator LN(s) from equation 2.2. there are two conditions:

for it odd. k = -1 while for It even. k = 1. These conditions ensure that terms in s" * I

cancel, they also represent the relative invented and non-invenedoonnections between

high-pass and low-pass channels.

Henceforoddn

L1.
2 2

LN(s)|,,mid =2s [[“2;+[2btalr'a21+tls]
r=0 ... 2.6

and for even n

7

LN(S)|n even = a0 ' 2 ha: .152“1 +(2bla2r —| ‘ at)?
'=‘ ...2.7

 

Using equations 2.5. 2.6. 2.7 the low-pass filter transfer function AL(s) can be

evaluated for any order of polynomial Pn(s) when matched to the first-order high-pass

function of equation 2.3. where the all-pass function follows directly from equation

1.3.

In Section 2,l.l asymmetric examples using the first-order. high-pass filter together

with low-pass filters of orders n=2 to 4 are considered. although by following the

procedure, higher orders can also be determined. '

2.1.1 First-order, high-pass filter, with polynomial Pn(s) order n = 4

A n = 4 example demonsu-atcs the evaluation procedure and allows simple modification

to n = 2 by setting appropriate coefficients to zero. From equation 2.5, 2.7 the transfer

function for AL(s) is given as,

3 l 2 4
LN(s) _ “o ' “‘5 - 1135 ' (2bldl ' a2)S - (2b?) ‘ 305

LD(s) _

 

ALG): ( 2 3 4
(“‘bls) a°+als+azs +335 +345

and the all-pass function as
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2 3 4
a0 +1115 +325 + .135 + J45

...2.9

The order of the polynomial LN(s) can be minimised (thus maximising the high

frequency. rate ofattenuation ofAL(s)), by setting

:14 = 213123

a; = 2b1a|

and nonnalising the dc gainuto 1 i.e a0 = 1,

whereby.

. ,l - als - J35

AL(S)=_—————2—3-——

(1+ bs)(l + als + 2blals + a3s + ZblaJs")
. 2.10

and.

  

.2.11

2.1.2 First-order, high-pass filter, with polynomial l’n(s) order n : 2

Equation 2.10. 2.11 are modified to order n = 2 by setting coefficient :13 = 0, whereby

(l-als) 1 ' .

A(s)= . .——————-
L 1+bs

l (l+as+2basz)

 

.2.12

and,

 

...2,13

in equation 212. we note the special case where if :11 = bl. AL(s) becomes second-

order in cascade with a first-order all-pass transfer function.

However, a characteristic revealed by equation 2110 is that as the order of n is increased

the hf. rate of attenuation approaches only 12 dill/octave. Hence there is little advantage

in seeking larger values of it particularly as the phase distonion described in the all-pass

transfer function (equation 2.9. 2.1 1) becomes more severe.

2.1.3 First-order, high-pass filter, with polynomial l’n(s) order n = 3'

A similar procedure to section 2.1 is followed but this time AL(s) is derived from

equation 2.5. 26 whereby for n = 3

92
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LN“) no + «2:;2 + [zblao - 3']: + [2b1a2 - ajls’AL(s =— =—“
“3(5) (1 + bls)(l + als + .1252 + 3135’)

.2.14

PJ(-s) l- als + 51252 - 21353

P(s)_ 2 J3 I+as+ 5+ 5
' a“ a’ .2.15

' Again LN(s) can be reduced in order by setn'ng

a3 = Zbla2

al =2blao

whereby,

2
1 +323

.I\L(s)=‘$3
(1+bls)(l +2bls+azs +2blazs) 2‘6

and

2 3P3(-s) = 1 - 2bls + a2§ - 2bxnzs

P36) 3

 

2
l+2bs+as +2bas

l 2 12 .i.2.l7

This example is characterised by a third-order, all-pass composite tmnsfcr function anda real transmission zero in LN(s).

L4 First-order. high-pass filter, with polynomial Pn(s) order n = I

By setting 32 = 0 in equation 2.16. 2.17 the first—order all-pass response results.

1 

AL“) = (1 + blle + 2bls)
.2.18

Pl(-s) l - 2bls

92m ‘ 1 +2bls 2 19

This alignment is possibly the most useful as AL(s) remains second order and is all
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pole. while the allvpass function is first order thus offering reduced phase distortion.

also equation 2.18shows that the second pole is located at one half the frequency of the
high—pass filter pole. consequently AL(s) has a greater attenuation at and above the

high—pass filter break frequency, yet retains only gradual curvature in the amplitude

response. In fact at the high-pass filter 3 dB break frequency. IAL(s)l exhibits 10 dB

attenuation and the frequency of maximum group-delay distortion is one half of the

3 dB break frequency of AH(s).

2.2.1 Second-order, high-pass filter with polynomial [3(5) of order n = 2.

The second-order tmnsfer function AH(s) is defined as,

 

bisZ

ANS) = 2
l + bls + bzs 2 20

that is

HN(s) = bzsz

llD(s) = 1 4» his + bzsz

For n = 2, let szs) = no + 315 + azsl

Where from equations 2.1, 2,2, AL(s) follows as.

2 3
A ( ) LN“) no _ (a1 - nobos + (:12 - albl‘)s _ (2.1le - alibi);

s =_ =_____—_.__—
L

I‘D“) (no + 315 + a252)(l + bls + bzsz) 2 21

and I l

P 2
1(-s) = no - als + 315

P2“) no + als + 21252 2 22

To reduce the order of LN(s). lot so = 1 and,

31 = b1. 32 = 31b1, 2ale = azbl

La.

1

. ALm— (I h/E s+2bzsz)(" +v/2Tz 5"b252) - - - 213
94 Proc.t.u.A. vm I: ran a (1990)
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P2(-s) _ l- lzb2 s+2b252
P2“) 1 + 2bz s + 213152

 

. 2.24
2

bzs
 

2
l + 2b 5 + b s

2 2 ...2.25

2.2.2 Second-order. high-pass, filter with polynomial mm or order n = 3

For n = 31ctP3(s)= a0 + als + itst + a353

where from equation 2. i. 2.2, AL(s) given by.

mm 30 - (a. - aabl)s + (32 + Zach: ' albl)52 - (a: ' azl’t)s3 + (2321’: ' 31M);_—______——_
(a0 + als + 3251 +B353) (I + bls + bzsl) ‘

. 2.26

Setting a0 = 1 and reducing the order of LN(s)

l'("t ’firz‘)‘

 

M5) = _
(I + als + (a| ’2b2 ~2bz)sz+ (zalbz . (2b2)“z)sa) (I + ’sz s + bis-I)

. . . 2.27

where

3/1 3
P3(-s) 1 ' a1“" + (at 2b: ' 2'32); ‘ (23152 ' (2'32) )5P__ =———.—_

3(5) 1 + als + (a‘ sz - 2b1)s2 + (2311,2 . (2|:1)m)s3

. 2.28

and AH(s) is again given by equation 2.25.

Examination of equation 2.27 shows that by increasing a from 2 lo 3. the hf rate of
attenuation compared with equation 2.23 remains unaltered because of a zero in LN(s) .
Hence with a second-order, high-pass filter there is little advantage in seeking a
polynomial Pn(s) order > 2, a result that mirrors the first-order ease of Section 2.1.
Hence we may generalist: by saying that for a high-pass filter of order r. the order of
polynomial Pn(s) should not exceed r if zeros in AL(s) are to be avoided. where it
follows that the maximum order ofAL“) is 2r.
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2.2.3 Second-order, high-pass filter with polynomial Pn(s) of order n = l

The order of the all-pass function in equation 2.23 reduces to 1 when

a1 = ’sz

where from equation 2.27. 2.28

l

(In/ER. s)(l+ 2b2 s+bzsz)
AL(s) =

 

. 2‘29

 

2 2 ...2.30

PI(-s) _ 1- {21:2 5

P (s) ‘
1 H42.” 5 ...2.31

This result is interesting to compare with the symmetrical. third-order. all-pass

alignment discussed in Section 1.3.

 

2.3.1 Third-order, high-pass filter with polynomial Pn(s) of order n = 3

The third-order. high-pass filter is defined as.

 

A (I) b’ssH s = z 3
l+bls+bzs +bls 232

where.

HN(s) = blsJ

110(5) = 1 + bls + bzsz + has]

As discussed in Section 2.2.2. the highest order polynomial Pn(s) to yield an all-pole,

low-pass filter AL(s) is 3 where.

2 J
P3(s) = no + als + azs + :55

Following equation 2.1. 2.2 the transfer function AL(s) is given as (forao = l).
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1. (al - hos + (a2 + b2 - am); _ (a3 + albz - a217, - 2b,)5J

A (S): LN(s) = +(“2bz ‘ “abds‘ - (33b: ‘ 2“2"s)s5
L ID“) (i + 315 + :252 + ajsg)(1 + bls + bis2 + bjsg)

Equating LN(s) = 1 yields two solutions:

1

 

 AL<s)=
hm hm

1+ 2bz s+bzsz+-2—s3 1+ 2bzs+bzsz+—2—.83

J3 2J5
, 2.33

3/1
b2 5}

4L_
ANS): I33/2

1 2b + b 2 + 2 3+ 25 25 a; s

. . . 2.34
and ,

m 3
b s2 2

1- ’2b s+b -
P3(_s) 2 2S 2

P (S) _ 3/23 b
' l+ 2b25+bzsz+le

fl . 2.35

The socond solution corresponds to the first—order polynomial when :42 = a] = 0 and is
described in Section 2.3.2. -

2.3.2 Third-order, high-pass filter with polynomial mm of order n = 1

Following the second solution in Section 2.3.1,

1

3/2

(1+ES)(l aft): s+b2sz+b%ss)

 

Ads) =

. 2.36
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3/2

b: 3
T5

AH“): 3/2
2 b2 3

1+ b2 s+bzs +7:
.237

and

Pl(-s) = l- t:2 s

P“) H bl 5
J: . . . 2.38

This result yields a first-order composite all-pass, with fourth-order low-pass and third-

ordcr high-pass transfer functions.

2.3.3 Third-order, high-pass filter with polynomial Pn(s) of order n = 2

To complete the third-order. high-pass set of asymmetric crossover Lhc :vcn-order

polynomial Pn(s) for n = 2 is considered where

Pn(s) = ato + als + 3252

Using the high-pass transfer function defined in equation 2.3.2 and applying equation

2.1, 2.2,

LN(S) 1‘ (“I ‘ bl)5 * (“2 + b: ' 3th“)? ‘ (“th ' “POSS + (32": ' 231%)54
MS) =m=——-——,————,—,—-——

(1+ als + 325 )(l +b‘s + has 4- has

Reducing LN(s) = 1 gives,

1

 

 AL(s)= .
b3/Z

(1+ ’Zbl s+b252) 1+ 2t:2 s+bzs’+—Z:7_—53
' 2

. 2.39

3/2b
2 2 53

AH“): 3/2
2 b2 3

1+ sz 5+sz +-———s

2‘5 ' .. .140

‘2
P2(-s) _ 1- [sz s + big

I’2“) 1+ 2t)2 5+ bzsz

 

. . . 2.41
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3. Loudspeaker system using an asymmetric crossover with a
first-order, high-pass filter in the satellite channel

Consider a satellite loudspeaker with a transfer function As(s) which exhibits a second-order,

high-pass response with a 3 dB break frequency circa 70-80 Hz. This system is to be
interfaced with a subwoofer system which has a low-frequency transfer function Aw(s) where

in the frequency range 100 to 500 Hz both satellite and subwoofer show well behaved
responses. The crossover align
AH(s). Ads) and P,(—s)lP1(s) are described by equation 2.3. 2.18 and 2.19 respectively.

In Fig.1 the two-way system is shown where the asymmetric high-pass and lowpass filters
are implemented using passive R-C circuits. The crossover frequency (-3 dB) is set at 200 1-12
and the filters designed using the equations presented in Fig.1. The subwool'cr in the example
has an extended response to 20 Hz and a Q = 0.5 while the satellite has an undamped natural
resonance of 70 Hz and a Q = 0.7. Computed results are then presented in Fig. 2a,h that show
individual satellite and subwoofer amplitude and phase responses both with and without the
associated emssover filters while in Fig. 2c the overall response is described.

The advantage of the asymmetric alignment is evident where a well controlled, composite
response is displayed. By setting the crossover to 200 Hz, the response of the satellite is
adequately curtailed at low frequency thus reducing distortion through excessive cone
excursion. However, the subwoofer commences its attenuation region at 100 Hz rather than
200 Hz and, being second order, achieves a respectable attenuation at mid and high
frequencies.

3 Conclusion

This paper has described a set of asymmeu-ie ail-pass crossovers up to the combination of
third-order high-pass. sixth-order low-pass alignments. However. the methods presented are
sufficiently general that the results can be extended to any high—pass filter of order r where the
maximum useful order for the low-pass filter is 2r. However, low-pass filters in the range r +
l to 2r can also be accommodated within an asymmetric alignment with a corresponding
reduction in order of the all-pass polynomial. lf low-pass filters of order > 2r are sought the
associated zeros in the numerator of Ads) must be accepted which then restrict the ultimate

attenuation, thus at hf. the rate of attenuation with frequency of a low-pass filter of order 2r is
the same as a filter oforder 2r + p. However. if the numerator of AL(s) contains for example.

an 52 term. a real transmission zero is introduced which may be used to increase attenuation in
the region of the crossover although non-monotonicity in the amplitude response results.

The first-order. high-pass example described in Section 2 is particularly useful because of the
minimal extra circuin required in the satellite channel which bodes well for minimising signal
impairment and the overlapping nature of the responses also increase their effectiveness.
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SUB-WOOFEH

Desngn. Let satellite 3 dB break lrequency = Io Hz

Set capacitors C 2, Ca . lhen R. = 1/(1211tuc2 )

lil(2 n IE3)

 

Figure 1 Two-way active |oudspeaker using asymmeiric crossover

wuh passive. low-level circuiiry..
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