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Introduction

A set of low-frequency crossover alignments is described that exhibit composite all-
pass chamcteristics but have individual high-pass and low-pass transfer functions of
different order. Of specific intercst is the alignment using a first-order, high-pass filter
although more general, higher-order asymmetric alignments are also discussed. This
work is presented for two reasons, first the existence of asymmetric filters gencralises
the already well documented crossovers belonging to the all-pass family and secondly,
the application of this class of filter to low-frequency, crossover design can represent a
significant simplification in network topology. However, the main application reginic is
restricied to low frequency primarily because of asymmetric phase response and the
association of lobing errors [Lipshitz er al 1983] when there are significant time delays
between drive unit acoustic centres.

As an example, a basic scheme is described in Section 3 that combines a broad
bandwidth loudspeaker with a sub-woofer. The system uses a first-order neiwork in the
satellite loudspeaker channcl yet accommodates a second-onder network of lower cui-

off frequency in the subwoofer feed to enhance suppression of high frequency signal
components.

Review of crossover systems

Crossover systems can be sub-divided into three broad categories, namely: constant
voltage, delayed derived and all-pass.

Constant voliage

For a two-way crossover with high- and low-pass transfer functions Ay(s), Ap(s)a

. constant voltage filter (Small 1971] is defined as:

A +A (=1 i1

The most common alignment of this class is the first-order system where,
as

MO =g

I
AS =T

for which Lhe solution is exact and both filters exhibit equal rates of aucnuation.
However, asymmetric, higher-order, constant-voltage alignments also exist, where for
example,
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1
A (s)=
L l+as+as +..+as
as+as +..+tas
a.$ as" !
as|le—2 s +2
! & 3,
A"(S)=

i .. 42S
+ alb + ... ans

ic at low frequency, Ay(s) =+ a;s and corresponds to a pseudo, {irst-order response.

1.2 Dclay derived

Delay-derived filters [Lipshitz eraf 1983] are not well suited to analogue applications as
they effectively combine s-domain and z-domain techniques. Their main application is
in digital crossover filter design [Bews 1987] where a prototype Jow-pass filter is
specified and evaluated using for example a Parks McClellan optimisation [McCleflan
1973] or Kaiser Window procedure and a complementary, high-pass filter derived.
Specifying filters in the z-domain gives,

N2
A@+A D=2 2
where 2N is the filter duration. Such filters are not well matched to the synthesis of
low-frequency analogue filters duc to the excessive number of coefficients N required
1o accurately approximate the impulse response.

1.3 Symmetric, all-pass crossover function

The class of symmetric ali-pass crossover has found relatively wide application
particularly in active loudspeaker systcms where filler realisation is well suited 10
opcrational amplifier circuits [Bohn 1983, Hawksford 1988).

This group of filters is described by, -

_ P (-5}
kAH(S) + AL(S) = -};;-(;T "

where P (s) is a general polynomial of order n, and k is cither 1 or -1 depending upon
system order and alignment.

Four common examples occur from order 1 to 4, though the exisience of higher-order
alignments is recognised [Bohn 1988].

(i) First order

1
AO=TT%

as
1+as’

Ayls) =

whereby
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as

I-
ALS) - Ayls) = 1 +as

However, by inverting the hf channel, the first-order, constani-voltage crossover
emerges, hence the all-pass alignment has minimal advantage, other than demonstrating
a tolerance 10 wiring errors in loudspeaker assembly.

(i)  Sccond-order. If,
22

a’s i
AH(s) = = AL(s) =—
(1 + as) (1 +as)
then
’ 1-as
A (5)- A ()= T3
(iii)  Third-order. If,
313
45

A 5=
H {(l1+as+ azsz)(l + as)

Als)=
L
(1 +as + a%s")(1 + as)
then,
22
l-as+as
AL(S) + AH(S) = 73
l+as+a’s
and
f-as
AL(S) s A“(S) = ‘m;

again the odd-order alignment exhibits a tolerance to hf channel inversion, although the
first-order, all-pass offers the best composite alignment due 10 reduced group-delay
distortion,

{iv) Fourth-order. The best known fourth-order alignment is the Linkwilz-Riley LR-4
[Linkwitz 1976], where
44

as i
Au(s) = A

7 T ' 2
(I+ﬁus+azsl) (l+ﬁas_+azsz)

and,
22
1- as
AL(S)+AH(S)= Zas+a's )
22
1+ J2as+a’s
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2. Asymmetric, all-pass alignments

The gencral expression for an all-pass alignment was given by equation 1.3, To
develop a method for idemifying asymmetric crossovers we express the transfer
functions A (s), Ay(s) as
LN(s) _ HN(s)
s’ P D
where from equation 1.3

HNGs) | LNGs) _ Pals)

HD(s} = LD(s) P(s)

As)=

Rearranging in terms of the LPF numerator polynomial LN(s),

_ LD [P (9HD() - kP (SHNE]
LNGs) = P,,(s)HD(s)[ ° " ]

Since LN(s) is a polynomial of finite order then,

LD(s) = Pn(s)ﬂD(s) Loe 21
and,
LN(s) = P, (-s) HD(s) ) kP (s)IHN(s) R )

Hence by specifying both the high-pass filter denominater polynomial and the
polynomial P,(s), the transfcr function of the corresponding the low-pass filter can be

derived. The following sub-sections describe a range of crossover examples where the
orders of LD(s) and HD(s) differ;

2.1 First-order, high-pass filter with polynomial P,(s} of vrder N.

In-this first class of asymmetric filter, the high-pass filter is defined as first order

where,
A bs
W= T35
.23
thatis
HN(s) = bys
HD(s)=1+Dbs

The polynomial P, (s) of order n is expressed as,

S0 ) Proc..0.A. Vol 12 Part 8 {1390)
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2.1.1

P (s)= 2 as'
t=0

.24
whereon the denominator of the low-pass filter LD(s) follows from equation 2.1,
LDEs) = (1 *b;8) i as
A , ... 25

In evaluating the numecrator LN(s) from equation 2.2, there are iwo conditions:
for n odd, k = -1 while for n even, k = 1. These conditions ensure that terms in 51 *+ 1
cancel, they also represent the relative invered and non-inverted connections betwecn
high-pass and low-pass channels.

Hence for odd n
2 2
NG|, g = 2 5 '[az.+[2b.az.-az,+.] s]
r=90
N

and foreven n

n

2
LN(S)In even 4" z [a?.r -1 52" : + (Zblah -1° a’lr)s:h
r=1 N o |

Using equations 2.5, 2.6, 2.7 the low-pass filter transfer function A;(s) can be
evaluated for any order of polynomial Py(s) when matched to the first-order high-pass

function of cquation 2.3, where the all-pass function follows dircctly from equation
1.3

In Scction 2.1.1 asymmetric examples using the first-order, high-pass filter together
with low-pass filters of orders n=2 io 4 arc considered, although by following the
procedure, higher orders can also be determined. '

Firsl-order, high-ﬁass filter, with polynomial P,(s) order n = 4
A n = 4 example demonstrules the evaluation procedure and allows simple modification

to n = 2 by setting appropriate coefficients to zero, From equation 2.5, 2.7 the transfer
function for A (s) is given as,

LN(s) 8- 33- a353 - (23 - "'1)52 - (2by2,- 34)54
LD(s)

AL(S) q " 3 ;
(1+by5) aj+as+as +a8 + a4s4

.. 2.8

- and the all-pass function as
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2.1.2

2.1.3

92

2 3 4
P4(—s)“ Qg - A8 +i,8 - 0g5 +i,8

P(s) 2 ] 4
4 a4 s +a,8 + 3,5 +a,s
0T 2 3 4 29
The order of the polynomial LN(s) can be minimiscd (thus maximising the high
frequency, rate of attenuation of A (s]), by selting

ﬂ4 = 2b133
a2 = 2b131
and normalising the dc gain"m licag=1,
whereby,
3
1-a8-0.8
A= : ; 3 4
(1+ bs)(l +as+ 2bas ags + Zblnss )
L 2.10
and,
P4(~s) _ a5+ 21)]11152 - ugss + 2[)‘:1]'54
Pys) g, as+ thals2 + :1353 + 2"1“354 . )
L2111

First-order, high-pass filter, with polynomial P.(s) order n =2

Equation 2.10, 2.1 are modified to order n =2 by setting coefficient ay = 0, whercby

1 - llis 1 : .
AL(S) M bls - 2
(l +aps+ 2bluls )

.22

and,

Pz(-s) _ l-a3s+ 2].‘0151152

- 2

PAs) p s a,8+2bas

S 213

In equation 2.12, we note the special case where if 2; = b, Ap(s) becomes sccond-
order in cascade with a first-order all-pass wansfer function.

However, a characteristic revealed by equation 2,10 is that as the order of nis increascd
the hf, rate of aucnuation approaches only 12 dB/octave. Hence there is litle advantage
in sceking larger values of n panicularly as the phasc distortion described: in the all-pass
transfer function (equation 2.9, 2,11) becomes niore severe.

First-order, high-pass filter, with polynomial P,(s) order n = K

A similar procedurc lo section 2.1 is.followed but this time A (8) is derived frowm
equation 2.5, 2.6 whercby for n = 3

Proc..0.A. Vol 12 Part 8 (1590)
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LN(s) 3+ 3252 + [Zbla0 ~a,ls + [2]:;1a2 - a._,]s’

A (5)= =
L
LD(s) (L+bs)l+as+ n232 + ajsJ)
. 2,14
p 2 3
J(-s) _ I- a;s+a,8 -as
P.(s) I
a l+as+as +as
O 215
* Again LN(s) can be reduced in order by setting
a, = 2bla2
a = 2"1“0
a, = 1
whcreby,
2
1+ a,s
As)= > 3
(1+ bls)(l + 2bls +as 4+ 2b1a25 )
L 2.16
and
.2 |3
PJ(-s) _ I- 2b]s +a,8 - 2bla25
P.(s) 2 3
3 I+2bs+a,5 +2ba.s
o "2 .. 217

This example is characterised by a thind-order, all-pass compasite transfer function and
a real transmission zero in LN(s).

1.4 First-order, high-pass filter, with polynomial Pn{s)“order n=1

By scuting ay = 0 in cquation 2.16, 2,17 the first-order all-pass response resulls,

1
Als) = (1 +B;5)(T+2b5)

L2.18
Pi-s) 1- 2bls
P(s) 1+2bs
219

This alignment is possibly the most useful as A (s) remains second order and is all
Proc..O.A. Vol 12 Parl 8 (1990) : 93
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pole, while the all-pass function is first order thus offering reduced phase distortion,
also exquation 2.18 shows that the sccond pole is located al one half the frequency of the
high-pass filter pole, conscquentiy Ag(s) has a greater aticnuation at and above the

high-pass filter break frequency, yet retains only gradual curvature in the amplitude
response. In fact at the high-pass filter 3 dB break frequency, 1A (s)! exhibits 10 dB

attcnuation and the frequency of maximum group-delay distortion is one half of the
3 dB break frequency of Ay(s).

2.2.1 Second-order, high-pass filter with polynomial Py(s) of order n = 2.

The second-order transfer function Ay(s) is defined as,

b:!s2
Ay =—————
1+ bls + bzs
. 2.20
that is
HN(s) = bzs2
HD(s) = 1 + b,s + bys”
For n = 2, let P,(s) =8y + 2,5 + a,s?
Where from equations 2.1, 2.2, A (s} follows as,
' 2 3
A LNGs) 39-(B1° b )s + (3, - 3y by )s” - (2,0, - a,b))s
L 5) = =
LD(s) ("’u +as+ a.lsz)(l + b]s + bzsz)
221
and
p 2
2(-s) A" a;s+a,s
P(s) 2
2 a +as+a,s
[ 2 L am

To reduce the order of LN(s), let g = 1 and,
i, = bl.' ay =ﬂlb1, 2ﬂ|b2 = azbl

ie.

1
.'AL(S)- (l + 25, S+2bzsz)('1 + 2, “bzsz) -.. 223
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Pis) - f7b) s+ 20,87

Pisr 14 2b, s+ 2b2s2
. . 2.24
2

bzs

Ayls) =
H
1+ f2b, s+ 13252
.2.25
2.2.2 Second-order, high-pass, filler with polynomial P,(s) of order n = 3
For n =3 lIct Py(s) = ag + a5 + 2552 + 245’
where from equation 2.1, 2.2, A (s} given by,

_LN(s) _ 8- (31 - 205 )s + (32 + 22gh; - a|b1)s2 -(& b)) + (22,0 - a3b))5
A= = — N
(ao+a|s+azs +4a,5 )(] +bys +bys )

.. 226
Setting ag = ! and reducing the order of LN(s)

1-(a 'JE)S ‘
(l TS (a'Jz_b; '2b2)52+ (klbz - (2b2)3/1)33) (] + 2, s+ blsz) |

Als)=

...227
where
2 32\ 3
Py(-s) l-as+ (aI 2b, - 2b2)s - (zalbz . (sz) )5
Py(s) ~ 2. )2 26372 )3
1 +als+(al 2b, - bz)s + 2“1b2'( bz) s
.2.28

and Ay(s) is again given by equation 2.25.

Examination of equation 2.27 shows that by increasing n from 2 10 3, the hf rate of
alicnuation compared with equation 2.23 remains unaltered because of a zero in LN(s).
Hence with a second-order, high-pass filter there is little advantage in seeking a
polynomial P_(s) order > 2, a result that mirrors the first-order case of Section 2.1.

Hence we may generalise by saying that for a high-pass filter of order r, the order of
polynomial P(s) should not exceed r if zeros in AL (s) are to be avoided, where it

follows that the maximum order of Ap(s)yis 2r.

Proc.l.O.A. Vol 12 Part 8 (1990)
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2.2.3 Second-order, high-pass filter with polynomial Py(s) of ordern =1
The order of the all-pass function in equation 2.23 reduces to 1 when

31=J2_b-2‘

where from cqt;ation 2.27,2.28

1
A (s)=
L 2
1+,2b 5 1+,2b s+b,s
( g )( o ) .. 2.29
A bis2
Hs= 2
1+ _J2b, s+b,s
z 2 .2.30
and
Pis) 1- !21:2:5
Pis) 1+ f2b) s -

This result is interesting to compare with the symmetrical, third-order, all-pass
alignment discussed in Section 1.3,

2.3.1 Third-order, high-pass filter with polynomial P,(s) of order n = 3

The third-order, high-pass filter is defined as,

' b353
AH(S) = 3 3
_ l+bls+b2s +bjs 232
where,
HN(s) = b,s’

HD(s) = 1+ bs +bys’ +bys’
As discussed in Section 2.2.2, the highest order polynomial P(s) to yield an all-pole,
low-pass filier Ap (s) is 3 where,

2 3
Ps(s) =3 +as+as +ay8

Following equation 2.1, 2.2 the transfer function A; (s) is given as (forag=1),

96 ‘ Proc.l.O.A. Yol 12 Part 8 (1930)
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1-(8;-by)s+ (8, +by-ab)s? (a3 +ab, - ab, - 2by)s}
A ey LNG) +(3b - 43b))s* - (ab, - 2a,by)s°
L8 = =

T ID{s) (1 ras+ a252 + a._,sS)(l +bs+ b252 + b353)

Equating LN(s) = 1 yiclds two solutions:

(1+ 2b s+bs +-—-s)(1+ 2b, s+bs +—2]-_-s)

A=

.2.33
32
b, $
Ays) = 22
372
2 b 3
2b, s+ bs + z—j_.— 5
2
... 234
and .
3 3
2 Y7
2b, s+bs -
2 2
Py-s) _ 7z
P,(s) 32
' 1+ 2bzs+bzsz+—2—ss
2
J— .2.35
The second solution corresponds to the first-order polynomml when a; = a; =0 and is
described in Section 2.3.2,
2.3.2 Third-order, high-pass filier with polynomial P,(s) of order n = 1
' Following the second solution in Section 2.3.1,
1
A= 3{2
(1 +Jb 5)(1 +r s+bzs +—-s )
. 2.36
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3/2

b
2 k]
A ()= 733
uls) = 372
2 z 3
1+‘,b_2I s+bzs +——5
2
.2.37
and
Ps) _1- fo, s
PyGs) 1+JF2'5 538

This result yiclds a first-order composite all-pass, with fourth-order low-pass and third-
order high-pass wansfer functions.

2.3.3 Third-order, high-pass filter with polynomial P (s) of order n = 2

To complete the third-order, high-pass set of asymmelric crossover the even-order
polynomial P(s) for n = 2 is considered where

Pn(s) =a,+25+ azs2

Using the high-pass transfer function defined in equation 2.3.2 and applying equation
2.1,2.2,
AS) LN@) 1-(3-D)s+ (a4, “ll’l)s2 -(a,b - azbl)s:‘ +(azb; - 2“1"3)84
8) = =
' LDEs) (l +as+ azsz)(l +bs+ hzs2 + b353)

Reducing LN(s) = I gives,

A=

1
' B3
(1 + .fzbz s+bzsz) 1+ f2b, s+b252+—2}_2—53

. 239

2z
Ayls) = 7
3

2 2
1+ 2b2 s+bzs +—te §

2 ' ...240

Ps) 1- f70] 54 by’

P.(s) F
2 1+ 2b25+bzs a4
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3. Loudspcaker system using an asymmetric crossover with 2
first-order, high-pass filter in the satellite channel

Consider a satellite loudspeaker with a transfer function A,(s) which exhibits a sccond-order,

high-pass response with a 3 dB break frequency circa 70-B0 Hz. This system is to be
interfaced with a subwooler systeimn which has a low-frequency transfer function A (s) where

in the frequency range 100 to 500 Hz both satellite and subwoofer show well behaved

responses. The crossover alignment selected for this example is given in Scction 2.1.4 where

Ay(s), A (s) and Py(-s)/P|(s) are described by equation 2.3, 2.18 and 2.19 respectively.

In Fig.1 the two-way system is shown where the asymmeuic high-pass and low-pass filicrs
are implemented using passive R-C circuits. The crossover frequency (-3 dB) is sct at 200 Hz
and the filters designed using the equations presented in Fig.1. The subwoolcr in the example
has an extended response 1o 20 Hz and a Q = 0.5 while the satellite has an undamped natural
resonance of 70 Hz and a Q = 0.7. Compuied results are then presented in Fig. 2a,b that show
individual satellite and subwoofer amplitude and phase responses both with and without the
associated crossover filters while in Fig. 2c the overall response is described.

The advantage of the asymmetric alignment is evident where a well controlled, composite
response is displayed. By setting the crossover to 200 Hz, the response of the satellite is
adequately curtailed at low frequency thus reducing distortion through excessive cone
excursion. Howevcr, the subwoofer commences its suenuation region at 100 Hz rather than
200 Hz and, being second order, achieves a respectable attenvation at mid and high
frequencies.

3 Conclusion

This paper has described a set of asymmetric all-pass crossovers up to the combination of
third-order high-pass, sixth-order low-pass alignments. However, the methods presented are
sulficiently gencral that the results can be exiended to any high-pass filter of order r where the
maximum useful order for the low-pass filter is 2r. However, low-pass filters in the range ¢ +
1 to 2r can also be accommodated within an asymmetric alignment with a comesponding
reduction in order of the all-pass polynomial. If low-pass filters of order > 2r are sought the
associated zeros in the numerator of A (s) must be accepted which then restrict the ultimate
attenuation, thus at hf, the rate of attcnuation with frequency of a low-pass filter of order 2r is
the same as a filter of onder 2r + p, However, if the numerator of A; (s) contains for example,

an sZ terin, a real transmission zero is introduced which may be used to increase attenuation in
the region of the crossover although non-monotonicity in the amplitude response results.

The first-order, high-pass example described in Section 2 is particularly useful because of the
minimal extra circuitry required in the satcllite channel which bodes well for minimising signal
impairment and the overlapping nature of the responses also increase their effectiveness.
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SATELLITE

1 ‘|' CET SUB-WOOFER

Design: Let satellile 3 dB break Irequency = I Hz

Set capacitors C 7 63 , lhen H‘ = 1/(121-"002 )

R, = ,”{2 nig.)

Figure -1  Two-way active loudspeaker using asymmeiric crossover
with passive, low-level circuitry..
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