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1. INTRODUCTION

. The auditory system appears to group together sound components which are likely to have arisen from the
same acoustic source. The aim at the Auditory Speech Sketch Project is to model some of the prooessas
which are thought to underlie this complex task. The Auditory Speech Sketch (ASS) is a collection 01 rep-
resentations which result lrom the application of grouping processes to data derived lrom a model at the
auditory periphery. The lower levels of the ASS consist of what are believed to be perceptually important
representations oI synchrony, onsets and modulation. Most ol the work to date has been to elaborate such
early descriptions. More recently. higher levels at representation have been developed: specifically, time-
treouency representations of synchronous activity are grouped together according to harmonic constraints.
Thus, the A53 can be seen as a hierarchical structure in which higher levels represent components train a
lower level which have beengrouped according to some criterion.

This'paper is organised as Iollows: first. the various theoretical threads which underlie the work are men-
tioned. leading to a rather different view at speech analysis than that embodied in most current Automatic
Speech Recognition (ASH) systems. Next. an example of processing in the A85 from signal to symbolic
description is given. In the third section, an algorithm tor harmonic interpretation is applied to the ASS as a
demonstration ol the way in which a symbolic description can facilitate models at auditory grouping process-
es. Finally. other work at Sheffield relating to the ASS is summarised.

2. MOTIVATION

The Auditory Speech Sketch Project. which began in 1968, was motivated by work in experimental studies
01 auditorygrouping (for a review, see Bregman. [1]). Bregman and others have suggested, with a good
deal of experimental Support, that the auditory system carries out a 'scene analysis' in order to determine
which parts of the complex mixture reaching the ears belong together. Components are more likely to be
grouped it they share some property such as occupation of similar time intervals or it they are modulated in
a common manner. The key notion is that the perception of acoustic sources appears to be mediated by the
tormation oI auditory streams. and that ongoing interpretation of the signal is made with respect to these
streams Streams may have a similar role to that played by objects in vision.

In order to model some oi these grouping processes directly. it is clear that we have to constmct represen-
tations ol signals couched in the same descriptive vocabulary as that used by the experimentalist. For ex-
ample, explicit characterisations of such things as harmonits. onsets. offsets and local modulation in
amplitude and lrequency may be required. The notion oI computing explicit representations to describe as-
pects ol auditory data stems lrom Marr‘s ideas in computational vision (Marr, [17]). which in turn have been
adopted Ior speech in the work oi Green and his colleagues [15].

These factors suggest a computational architecture for ASFI substantially dilterent lrom those predominant
in the current crop at recognition structures. Some ways in which a system based on adoption at the stream—
ing theory will differ trorn conventional approaches include the following:
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the role of relational structure: Relations between elements across lrequenq and time are empha-
sised. in ccnstrast with lrame-based descriptions. For instance. the socalled 'spectral integration
torce‘ responds to onset synchrony ol components (Dannenbring a Bregman. [12]). whilst a sequen-
tial grouping principle attempts to group successive elements in time on the basis cl lrequency prox-
imity (Tougas & Bregman, [21] . Further examples can be attributed to the general nation at “common
late . where components whic behave in the same way in time tend to be grouped into a single
stream: In all these respects, the relations between components are at least as important as the com-
ponents themselves.

idenllllcatlon is made after stream lormellon: Measurements (eg of timbre) appear to be made alter
stream lormation. For instance. a spectral shape which ordinaril gives rise to one vowel percept can
be perceived as a diflerent vowel it there is evrdence that part c it belongs to a separate stream eg.
Darwin. [13]). The implication is that an ASH system might postpone its spectral description untr
grouping into streams has been achieved. This notion is taken up in the worlr ol Crawtord 8r Cooke [9].

signal decodin ls an active rocess: Streaming indicates that signal decodin may be an active pro-
cess. in whi streams are armed in parallel and com ete lor components ossible interpretations
ol the data a pear to interact (Bregman 8t Tougas. [2]? Notions ol dis'oint assignment (Bregman 8r
Rudnicky. [3) and the role of duplex perception (Ciocca A Eragman, {51) come into play here‘

auditory tlluslons: The overridin concern at the auditory system ap are to be to lind consistent ex-
planations ol thehinooming evi once. This might mean that the au itory system makes assumptions
about the BODUSIIC data in order to maintain a coherent percept (eg. Dannenbring. [111).

streams as objects: Whilst the bulk ol work in ASR is frame-based (what has been termed the 'bacon-
slicer approach'). systems based on streaming theory are more natural though of as object-based.
For example. experiments described in Dannenbring & Bregman [12] in icatet at au‘ditory streaming
reduces a listener's ability to judge relationships between components of dillerent streams. An ap-
retéiation ol obi4ect<based processing allows novel computational approaches, one at which is out-
ine in section .

explenellons are possible: In contrast with much ol the current work in low~level s ech rooessing,
we expect to be able to construct adequate explanations ol the incoming signal. ndee , the goal at
the work is precisely that; given an arbitrary com lex mixture ol speech an other sources, the sys-
temdslaoiuld develop consistent explanations. eac ol which accounts lor some proportion ol the anal-
yse a a.

3. FROM SIGNAL TO SYMBOLS

The processes and representations currently employed in the Auditory Speech Sketch are outlined in Figure

1 below. in this section. briel descriptions of the auditory model and the processes which enable construc-

tion ol early symbolic descriptions are given.
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Figure l:signal processing to symbolic primitives in the ASS
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31 Peripheral processing
The signal is first procesed by a model of the auditory periphery (Cooke. (6]). Briefly. the peripheral filteringaction is accomplished by abank at gammatone filters (Paflerson at at. (19]). The output of each filter ischaracterised by its instantaneous frequency and amplitude. The instantaneous envelope undergoes a non-linear static compression based on an expression relating stimulus level to inner hair cell receptor potential(Crawtord a Fettiplace. [10]). The compressed signal forms the input to a model at hair cell/nenre-ribretransduction. The model is analytic for constant input levels and provably additive lor ideal signals.
3.2 Synchrony strands

The instantaneous lrequency measures are combined to form temporally-extensive descriptions of synchro-nous activity in the litter outputs. The process operates in three stages (Figure 2, left panel). First. the dom-inant frequency in each auditory channel is calculated by median-smoothing the instantaneous trequencyestimates. This takes place each millisecond. Each frame cl smoothed dominant lrequency estimates will
contain, in general. a high degree of redundancy since large numbers of filters will be responding to thesame stimulus component. The next stage attempts to provide a summary of this synchronous activity withina single millisecond. using a simple but powerful ordering constraint (Cooke, [7)). The resulting tokens rep-resent groups ol channels with similar characteristics - place-groups. The linal stage is to aggregate place-groups over time in a manner akin to formant-tracking (except here we are operating over a liner time-scaleand can recover lrom tracking errors). The resulting symbolic representation forms one aspect of the ASS.namely, synchrony strands (Figure 3. top). Strands produced in this way lend to represent harmonics. lor-manls, or. in the region 01 1000-1500 Hz. some mixture at the two (the representation at F2 in the auditorysystem is something most workers appear to finesse. to the extent or choosing inappropriate lrequency
scales in which F2 is not resolved into harmonics).
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Figure 2: synchrony strand (left) and onset group (right) lormation

An attempt to assess the completeness of synchrony strands as a general speech representation has beenmade via resynthesis. ll each strand is treated as a time-varying specification of frequency and amplitude.then a trivial additive synthesis procedure can be adopted (Cooke. [7]). The results 0! inlormal (but fairlywide-ranging) listening tests indicate that speech synthesised Irom strands is not only highly intelligible but.in many cases. virtually indistinguishable from the original. This is the case for male/lemale speech (rpm 4databases. whispered speech (perhaps surprisingly) and speech with added white noise. In tact. the resyn-thesised speech with this kind of noise sounds rather more intelligible than the original.
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3.3 Onset groups

The synchrony strand representation is complemented by aninitial characterisation ot onset responses

from the hair cell outputs in the periphery model. The starting point is a determination cl peaks in the hair

cell responses. We recognise that such peaks sometimes correspond to onsets of signal components.
whilst at other times reflect local variations in signal level. Such local variations may themselves be due to

amplitude modulation caused by the interaction at harmonics within a filter. Both signal onsets and regular-

ities related to envelope modulation are likely to be useful aspects of any auditory description. We attempt

to extract both types at peak using 2 stages of temporal processing via a neuronal model based loosely on

that of Segundo et al.[20].The first stage provides short-term temporal processing employing a time-con-

stant oi about 2 ms. This tits with various estimates at temporal Interval detection ability (reviewed in Moore,

[18]). Intervals between peaks which result lrom this stage can provide a crude estimate ol amplitude mod-
ulation rate: abetter approach is deserted in-Brown & Cooke [41.The second stage is identical to the tirst

except that a time constant at 40 ms ls used. Finally, a relatively simple grouping at such onsets across

channels is employed based on proximity of onsets across time. The characterisation in terms ol such on-
set-groups can be seen in the lower panel ol Figure 3.

    Figure 3: Onset groups (bottom) and synchrony strands (top) produced in response to the utter-

ance 'This time its Iar Ia! Ian to read‘ (lemale speaker).
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4. HARMONIC LASELLING in the A55

As an illustration ot a process which may be used to group ASS primitives. we have considered the task at
labelling strands which represent harmonics. The process described below might be considered as employ-
ing a 2-dimensional time-varying harmonic sieve. However. the approach outlined here is data-driven. start-
ing with the most dominant strand (during strand tormaticn. the ettective number at channels which appear
to be responding to the same component are summed. thus giving a dominance measure tor each strand
which is a tunction at its length and its prominence).

select most dominant
unlabelled strand in
harmonic re ion

determine set ol
h p - theses tor FD

taro-at

hypeMl ¢

su - rt

seek sequential 4'   
Figure 4: One cycle oi harmonic labelling, showing simultaneous (top right) and so.
quantial (bottom right) hypothesis propagation.

The algorithm begins by finding the most dominant strand below 1500 Hz. which is usually a iairly long. low-
harmonic. A set at hypotheses about F0 is then generated. based on the location in lrequency of the strand.
For example. it the most dominant strand covers the frequency region 250-350 Hz. it is likely to be either the
fundamental. or the first. second. third or iounh harmonic. It is unlikely, based on the existence region tor
pitch. to be a higher harmonic. A set of hypotheses is set up to represent each one at these cases. Hypoth-
eses are placed on an agenda.

41 Simultaneous grouping

The algorithm proceeds to develop each item on the agenda by seeking first simultaneous. then sequential,
support. as illustrated in Figure 4. For example. it the hypothesis is that the dominant strand is the second
harmonic. then a time-varying sieve would be set up. with its 2nd harmonic aligned with the dominant strand
Since strands live inlrequency and time. we can be quite strict about those strands which fit into the sieve.
Currently. a figure at 80% overlap between strand and sieve is required for a strand to support the hypothesis.
Coincidenial matches in individual trames are therelore ruled out.

A scoring mechanism is used in which the total possible support tor a hypothesis (assuming all strands in the
region where harmonics are resolved are harmonics ol the estimated F0) is calculated. and used to normalise
the actual support found during this stage. Thus. each hypothesis obtains a score which conveniently repre-
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sents its coverage of the data. Clearly, if we are dealing with fully voiced, single speaker speech. we would
expect to get hypotheses which account for a significant amount of the data (this is what we actually find),
4.2 Sequential propagation

Hypotheses which have undergone a stage of simultaneous grouping are placed back on the agenda (in
score order. for future pruning, although in the current system we fully explore all hypotheses). The second
form of support gathering is via sideways (sequential) propagation. as depicted in the lower right panel of
Figure 4. Since strands occur asynchronously, it is likely that. following the simultaneous grouping phase.
strands with portions outside the temporal extent of the original hypothesis will be found. These (both on the
left and right of the original) form new hypotheses which are then be subject to simultaneous grouping. In
this way. hypotheses are propagated throughout the utterance.

it is worth noting that. at this stage. it is possible to find conflicting predictions of F0 outside the original re-
gion of the hypothesis. This means that we can recover from tradting errors made during strand formation
(although the conflict-resolution step has yet to be implemented in the model).

4.3 An illustration: labelling harmonics from concurrent synthetic vowels

The process described above works well on all the single speaker material we have examined. It is of more
interest to see an example of its performance on more complex stimuli such as simultaneous vowels. Briefly.
two vowels(fly! with a fundamental of 100 Hz and /aw/ on 150 Hz) were generated via the Klatt synthesiser
(Klatt. [16]). and their waveforms were summed. The combined waveform formed the input to the model.
resulting in the strands shown in the central part of Figure 5.

Warm up, turn
mt Snafu”  

Figure 5: Labelling harmonics from simultaneous synthetic yowels. Strands (centre) together with loca-
tions of F0 and harmonics attributable to 150 Hz vowel (left of centre) and 100 Hz vowel (right of centre).
Right panel shows top scoring interpretation of date. whilst lett panel shows the next best interpretation.
Numbers on strands show which multiple of the fundamental they represent (subtract one from this to get
the harmonic number i).

The top two hypotheses. which account for 61% and 59% of the data respectively. are shown on the right
and left of Figure 5. The leftmost panel correctly identifies those strands which support the 150 Hz funda-
mental. whilst the right panel identifies those for the 100 Hz fundamental. Thus. the top two hypotheses are
the correct ones. A total of 10 other hypotheses were generated. all of which scored rather less than 30%.
in most cases. these weaker hypotheses were supported by strands which formed some subset of those
utilised by one or other of the two correct solutions. This suggests a possible mechanismlor dealing with
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IowAscoring hypotheses. ideally. the set at hypotheses can be considered as torming a partial ordering de-
fined by the subset relation on sets at supporting strands. It a hypothesis accounts tor some subset ol the
data amounted tor by some other hypothesis. then it will tall lower in the ordering than the correct hypoth-
esis (Occam's razor). Hence. the system. because 0! its explanatory descriptive base. might handle octave
errors and the like.

5. FUTURE AND RELATED WORK

This paper has provided a basic description of the ASS and illustrated a single grouping approach which it
has been possible to implement. Much more work is required to develop a generalised framework in which
a collection of dilferent grouping processes can reside. For that work. consideration must begiven to com-
petition between hypotheses and an interpretation oi the grouped structures where components are shared.
in this regard, the role at the principle ot disjoint assignment. and its antithesis, duplex perception. must be
assessed. it is possible that the notion ot a partial ordering at hypotheses is sufficiently powerful to serve as
a computational structure tor more complex interactions of grouping principles. Further. the scoring scheme.
based on the amoum at data explained by the hypothesis appears to provide a powerful mechanism tor
scheduling hypotheses.

In parallel with these activities, lurther elaborations ot the early levels ol the ASS will be required. We do
not. as yet. know how robust the onset groups are since they are not currently part of any grouping process.
Similarly, the rather crude measure of amplitude modulation rate derived from the short-temt temporal pro-
cessing ol spikes needs to be rigorously assessed. A good test would be to use It as the basis for grouping
strands which represent tormants. using the lml—Ilil data of Darwin& Gardner [1 a).

other work at Shetfield will lead into the Auditory Speech Sketch Projea. and make use at the streaming
algorithms embodied in the work. Brown a Cooke [41 report on the notion at using physiologically—based
maps as a computational representation at certain signal parameters such asamplitude and frequency
modulations. In particular. we hope to develop a better temporal aggregation stage through the use at a map
ct trequency modulation. Crawlord a. Cooke [9] are tackling the further issue at how large-scale spectral
integration might lead to important normalisations in phonetic systems. in that approach. integration is seen
as a post-streaming process. so it is natural to see any modules developed in that work as tollowing on trom
the streaming described in the current paper. We are attempting to develop an integrated approach to mod-
elling auditory processes; our current thinking on this is contained in Cooke, Crawford a Brown to]. There
is still a great deal of work which needs to be done. both in the experimental sdences to support models.
and item the computational viewpoint at how to extract appropriate descriptions and coordinate exploration
of the auditory scene.
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