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 In earlier work, a procedure for identifying the foundation of a rotor bearing foundation system 

(RBFS) via modal parameters using rotor and foundation motion as input data was outlined. The 

procedure was evaluated numerically using a RBFS comprising an unbalanced flexible rotor 

running in fluid film bearings fixed to a damped flexibly supported rigid foundation block.  

While reasonable identification was achieved when the input data was truncated to 2 digit accu-

racy to simulate measurement error in practice, the iterative approach proved problematic and 

not conducive to investigating the effects of measurement speeds (input data) on identification 

accuracy. In this paper, a simpler approach is outlined. Comparison of the identification ob-

tained via this simpler approach using the same input data showed no significant improvement, 

predicating the need for further investigations to minimise the effect of round off errors.  
 Keywords: system identification, rotor foundation, damping 

 

1. Introduction 

Modelling the foundations of rotating machinery is an invaluable asset for efficient operation and 

balancing [1-3]. There are two common procedures for such modelling. The first uses appropriate 

experimental vibration measurements to identify an equivalent foundation (a foundation which re-

produces the system unbalance response over the speed range of interest); the other models the 

foundation by finite elements, this latter approach being limited by difficulty of modelling [2]. This 

paper follows the former approach and is concerned with developing a procedure which is applica-

ble to existing turbomachinery installations without requiring rotor removal.  

The problem is to identify appropriate mass, damping and stiffness matrices or appropriate mo-

dal parameters for this equivalent foundation. Such an identification procedure invariably requires 

as input data the forces transmitted to the foundation via the bearing pedestals as well as the motion 

of the foundation at appropriate locations. Provided the dynamic properties of the rotor are known 

(not regarded to be a significant problem), such force data can be obtained from existing perform-

ance monitoring instrumentation, viz. displacement transducers measuring the relative motion be-
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tween the rotor journals and the bearing housings, and accelerometers measuring the absolute mo-

tion of the foundation at the housings. Such a rotor-model-based force determination approach, 

which relies on knowledge of the rotor unbalance and on the dynamic properties of the rotor, has 

been experimentally proven to give satisfactory identification of a simple flexible pedestal bearing 

support in a laboratory test rig [4]. Thus, it is assumed for the foundation identification procedures 

to be developed below, that all externally applied dynamic forces to the foundation at the housing 

supports (due to rotor unbalance) are available as input data, together with all required foundation 

motion measurements. This is so even if the actual rotor unbalance is unknown; in which case all 

measurements need to be repeated with an added known unbalance [4].  

 Assuming that the foundation damping can be approximated by a diagonalisable damping ma-

trix, earlier work has successfully identified, via numerical experiments, an equivalent foundation 

for a RBFS comprising an unbalanced flexible rotor running in hydrodynamic bearings which are 

fixed to a damped flexibly supported rigid block (a six degrees of freedom (DOF) foundation) [5].  

This system is shown schematically in Figure 1. Though reasonable identification was achieved 

when the input data was truncated to 2 digit accuracy (to simulate measurement error in practice), 

the iterative approach proved problematic and not conducive to investigating the effects of meas-

urement speeds (input data) on identification accuracy. In this paper a simpler approach, which 

avoids iteration, is outlined and compared to the earlier approach. The identification problem for the 

more general case, when the foundation damping matrix need only be assumed to be symmetric, is 

significantly more difficult [6] and is left for future work.                 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Unbalanced rotor mounted via two hydrodynamic bearings on damped flexibly supported rigid 

foundation block. 

2. Notation 

A transformation matrix with elements aij 

C foundation damping matrix 

c diagonal modal damping matrix with diagonal elements ck 

f, F vector of forces acting on foundation, vector of complex amplitudes thereof 

K foundation stiffness matrix 

k diagonal modal stiffness matrix with diagonal elements kk 

M foundation mass matrix 

m  diagonal modal mass matrix with diagonal elements mk 

m          number of measurement data speed sets  

n number of foundation degrees of freedom  

Q vector of complex amplitudes of modal displacements of the foundation 

     x, X vector of foundation displacements, vector of complex amplitudes thereof  

, k   foundation modal matrix with elements ij, k
th

 column vector of  
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λ             diagonal matrix of foundation eigenvalues with diagonal elements λk  

 excitation frequency, rotor speed 

ωk k
th

 undamped natural frequency of foundation = √ λk 

ξ diagonal normalised modal damping matrix with diagonal elements ξk     

ζk k
th

 modal damping ratio 

3. Theory 

For an unbalanced RBFS such as schematically shown in Figure 1, the system excitation is syn-

chronous with excitation frequency Ω.  The equations of motion of a general n DOF foundation 

may be written as 

  

 
fKxxCxM  

, (1) 

 

where M, C and K are n by n symmetric matrices. The elements of x are the n independent dis-

placements chosen to coincide with convenient measurement locations which include the excitation 

force application points. The elements of f are the external excitation forces, acting at selected loca-

tions (for the foundation in fig. 1 these would be the forces transmitted to the foundation at the bear-

ing supports). Assuming periodic response with fundamental frequency , one can write [4]  

 

 FKXCXMX  i2

. (2) 

 

The elements of X, viz. X1, X2,…, Xn, are obtained from foundation motion measurements 

whereas the elements of F, viz. F1, F2, …, Fn, are calculated from the rotor model, the rotor unbal-

ance and rotor and foundation motion measurements at the bearing stations [7]. Letting 

 

 ΦQX  ,  (3) 

and multiplying through  by  
T
, eqn (2) becomes 

   FΦQkcm
T2  iΩΩ . (4) 

    Defining the transformation matrix A as  

 
1ΦA

T
, (5) 

eqn (4) can also be written as 

   FΦmXAλξI
TTi 12  . (6) 

    Eqn (6) yields the n identification equations (k=1,…n) 

   0/
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    Since Xj and Fj are complex quantities, eqn (7) actually embodies the two equations 
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and   k
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 where the superscripts R and I denote real and imaginary parts.  

      The parameters to be identified in the k
th

 identification equation now are: λk = kk/mk = ωk
2
, ξk, mk 

and ajk (j = 1,..,n).  The jk (j= 1,..,n) are automatically identified once A has been fully identified. 

Because the mode shape elements are relative values, so are the ajk, and one can assign an arbitrary 

value to any one of the ajk values. Hence, the number of unknown parameter values per identifica-

tion equation is (n+2); and, depending on the solution approach, the minimum number of speed 

data sets needed to solve the resulting simultaneous equations, obtained by substituting for   and 

the corresponding Xj and Fj into eqns (8) and (9), is also at most (n+2). These simultaneous equa-

tions are nonlinear, and an effective solution strategy is required to find the above parameters. Once 

found, one has, in effect, obtained an equivalent foundation. Thus, one can find M from 

 
T

AmAM  ,  (10) 

with similar expressions for K and C. 

4. Solution strategies 

The first solution approach was that adopted in ref. [5]. It involved further manipulation of eqns 

(8) and (9) to eliminate ξk, giving an alternative set of k identification equations (k=1,….,n)      
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where 
R
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     Note that eqn (11) is valid for all ξk. Hence, one can find all the other parameters first. However, 

eqn (11) is strongly nonlinear and an iterative approach was adopted. Assuming an initial A matrix, 

one can evaluate the Sk and the jk at any speed for which measurement data are available, so that 

the evaluation of eqn (11) for m speeds (m≥7), for some arbitrary guessed value for λk ,  results in m 

homogeneous linear equations in the seven unknowns ajk (j=1,….6) and mk. Least squares regres-

sion was used to reduce the number of equations to seven. Nontrivial solutions exist only when the 

determinant of the resulting coefficient matrix is zero; and this will (presumably) occur only when 

the guessed value for λk   corresponds to an eigenvalue. Numerically, this is tantamount to finding 

the λk at which the determinant has a minimum. Having found the λk,, one can find the ajk for each 

mode in turn, again using eqn (11), but now assuming any one of the ajk to be unity and solving the 

resulting non homogeneous simultaneous linear equations in six unknowns, again using least 

squares regression if  m>6. Once the ajk have been found for each mode, one has an updated A ma-

trix and the process is repeated, until there is no significant change in successive updated A matri-

ces. Here, the iterations were continued until there was no change in the fifth significant digit in any 

of the ajk or the mk. Having found the above parameters for all k modes, one can then determine the 

parameters ξk. Several ways for finding these are possible. The procedure adopted was to recognise 

that with the already identified modal parameters one can decouple the equations of motion, evalu-

ate the mobility functions for the k modes and then find the damping for the k
th

 mode by plotting the 

mobility function in the complex plane [8]. Though simple in concept, there is no guarantee that 

such a simple iteration of the matrix A will converge to the correct solution or converge at all; and 

various constraints or inner iteration loops were found to be necessary to achieve convergence. 

Also,  the better the initial choice of A, the greater the likelihood of, and the faster the convergence. 
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Here the initial A
 
was chosen as the approximate solution obtained when solving for the parameters 

using eqn (7), ignoring the fact that the jk are actually functions of A and assuming zero damping. 

The second solution approach concentrates on using eqns (8) and (9) to solve for the parameters. 

Assuming that the jk /mk=bjk are independent unknowns, the evaluation of eqns (8) and (9) for m 

speeds (m≥7), for some arbitrary guessed values for λk and ξk,  results in 2m homogeneous linear 

equations in at most twelve unknowns ajk (j=1,….6) and bjk (j=1,….6). Least squares regression is 

used to reduce the number of equations to as many equations as there are unknowns. Nontrivial 

solutions exist only when the determinant of the resulting coefficient matrix is zero. Numerically 

this is tantamount to finding the minimum of the determinant which is a function of the two vari-

ables λk and ξk. On finding λk and ξk, one can find the ajk, again using eqns (8) and (9) , but now as-

suming any one of the ajk to be unity and solving the resulting non homogeneous simultaneous lin-

ear equations in at most eleven unknowns, again using least squares regression. Once the ajk have 

been found, one has found the A matrix. The evaluation of the mk values is then reasonably straight-

forward. Note that this approach does not involve iteration of the A matrix but is likely to be more 

prone to round off errors as one needs to evaluate the determinants of larger matrices. 

5. Numerical experiments 

The same damped flexibly supported rigid foundation block that was previously identified in ref. 

[5] was selected to evaluate the simplified identification procedure. This foundation has exactly six 

DOF. Figure 2 shows the measurement locations on the upper surface of the block, allowing for the 

application of the external force f in the x2 and x5 directions at the connection point C1 and in the x3 

and x6 directions at the connection point C2. The block mass is 502.49 kg. With respect to the centre 

of mass, the connection points C1 and C2 are at (-L/2, H/2, 0) and at (3L/8, H/2, 0) respectively. 
 
 
 
 
 

      
 
 
 
 
 
 

 

 

 
 Figure 2: Measurement locations and directions (W = 317.5mm, H = 158.75mm, L = 1270mm). 

 

The foundation support stiffnesses and locations as well as rotor and bearing details for the 

RBFS in Figure 1 are as in ref. [7].  Hence, for specified foundation modal damping ratios, one can 

evaluate for this foundation the M, C, K,, λ and m directly; and for specified unbalance, one can 

evaluate the steady state system response of the RBFS in Figure 1. Using in-house software, the 

response was calculated over the speed range of 300 to 1450 rad/s in steps of 50 rad/s with unbal-

ances of U1 = U5 = 10
-4 

kg.m, U2 = U4 = 10
-5

 kg.m and U3 = 10
-6

 kg.m,. The input data ‘measure-

ments’ were then the response amplitudes X and the force amplitudes F at these speeds, giving 24  

input data sets. Identifications were carried out using both of the solution approaches described in 

Section 4, with the ‘measurements’ truncated to either 5 or 2 significant digits. The 5 digit input 

data served to evaluate the validity of the identification procedures and to define the achievable 

accuracy of the adopted computational procedure by minimising the effect of measurement and 

round off errors. The 2 digit input data better reflected attainable field measurement accuracy.  
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Table 1:  Actual and identified undamped natural frequencies, damping ratios and modal masses 

(a – actual; 1 – first solution approach [5]; 2 – second solution approach) 

 

  Mode 1 2 3 4 5 6 

       

       ωa (rad/s) 765.0 626.7 543.5 1259. 823.6 1002. 

ζa  × 10
3
 8.000 7.000 11.00 10.00 12.00 9.000 

ma (kg) 386.4 3.293 22.13 286.3 54.30 .07426 

       

ω1 (rad/s) 770.1 628.0 543.0 1260. 823.6 1004. 

ζ1  × 10
3
 8.183 5.112 10.93 9.941 10.35 8.638 

  m1 (kg) 382.7 3.431 17.68 291.6 51.76 .01862 

       

ω2 (rad/s) 765.4 625.7 546.9 1258. 822.2 1003. 

ζ2  × 10
3
 8.508 8.433 11.86 10.04 11.95 8.630 

m2 (kg) 390.6 3.066 19.11 286.6 52.95 .07046 

6. Results and discussion 

The  identified parameters obtained with both solution approaches using 5 digit input data agreed 

with the actual parameters  to four significant digits apart from minor deviatons in the fourth digit in 

a few of the modal masses and a few of the damping ratios. This proved the soundness of the identi-

fication procedures in principle.  Table 1 compares the identified undamped natural frequencies, 

modal masses and modal damping ratios obtained with both solution approaches with the actual 

ones using 2 digit input data. Agreement is fair. Particularly disturbing are the 0.7% error in the 

natural frequency of the first mode and the 27% error in the modal damping ratio of the second 

mode when using the first approach; and the 0.6% error in the natural frequency of the third mode 

when using the second approach. Further work is apparently warranted to minimise build up of 

round off errors. Space restrictions do not allow for the display of the identified modal matrix ele-

ments. However, the agreement between the actual modal matrix and identified modal matrix when 

using 2 digit data accuracy was again fair, regardless of the solution approach. 

The effect of these errors on the suitability of the now obtained equivalent foundations can be 

seen in Figures 3, 4 and 5, where the predicted unbalance response amplitudes at the left end, quar-

ter way along and halfway along the rotor are compared with the actual ones. The actual responses 

and those obtained using 5 digit input data are indistinguishable. The agreement between the actual 

responses and those obtained using 2 digit input data are not quite so good, there being errors of 

around 4% at some of the peaks or troughs. It appears that the identification accuracy using the far 

simpler second solution approach is as good as that obtained with the first approach. 

7. Summary of conclusions 

The proposed identification techniques are valid in principle and were correctly implemented, for 

when the input data is accurate to 5 digits, there is excellent agreement between the actual and iden-

tified foundation modal parameters; and the corresponding equivalent foundation can accurately 

reproduce the response of an unbalanced RBFS over the speed range of interest. 

When the input data is accurate to 2 digits the agreement between the actual and identified foun-

dation modal parameters is not quite so good; and the corresponding equivalent foundations cannot 

reproduce accurately all the response values of an unbalanced RBFS over the speed range of inter-

est, predicating the need for further investigations to minimise the effect of round of errors. 
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Figure 3: Comparison of unbalance responses at left end of rotor 

 

 

 

 
 

Figure 4: Comparison of unbalance responses quarter way along from left end of rotor 
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Figure 5: Comparison of unbalance responses half way along the rotor. 

 

It appears that the identification accuracy using the simpler second solution approach, which 

does not involve iteration, is as good as that obtained with the first approach. 

Once the solution procedures are improved so as to achieve good identification with 2 digit input 

data, the proposed procedure promises to be applicable in the field as it can utilise directly meas-

urements available from existing monitoring instrumentation. 
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