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1 INTRODUCTION

A sound field captured by a spherical microphone array can be expressed in terms of spherical
harmonics, constituting a scene-based representation 2. Decomposing the sound field into spherical
harmonic components requires the so-called radial filtering, where the frequency response of each
harmonic mode at the microphone radius is equalised®“. For open spherical microphone arrays, the
radial frequency responses are characterised by the spherical Bessel functions which exhibit spectral
notches. This introduces additional challenges to the filter design as compensating the notches with
peaking filters is prone to instability and noise boost issues®8. In this study, we design a radial filter by
combining IIR filters in parallel, where each IIR section is used to equalise one of the above-mentioned
notches. The peak frequencies of the IIR filters are matched with the notch frequencies of the spherical
Bessel functions. A regularisation scheme is applied in order to limit the peak magnitude response”2. It
is shown that this shifts the filter's poles away from the unit circle, thereby reducing the maximum boost
level of the filter. Finally, the gains of the individual lIR sections are obtained by a least-squares fit to the
desired transfer function at control frequencies. The spectral properties of the proposed radial filters
are evaluated by examining the magnitude and phase responses. The radial filters are further tested in
a simulated setup, where a modal beamforming strategy is applied to the spherical microphone arrays
signals. The spatio-temporal and spatio-spectral properties of the beamformer are investigated.

2 SPHERICAL HARMONIC ANALYSIS

In this paper, we use the spherical harmonic expansion to represent sound fields. A plane wave
propagating in a free-field, for instance, can be expressed as® [Ea 6:175)]

[e.e]
el e o™ =N Ai® i, (27) Vit (O Gpw) Yo (0, 0), (1)

where x = (r,0, ¢) is the evaluation point and np,, = (1, 6pw, dpw) the unit vector pointing towards the
direction-of-arrival of the wave. The spherical coordinate representation (r, 8, ¢) is employed where
r > 0 denotes the radius, ¢ € [0, 7] the colatitude, and ¢ € [0,27) the azimuth. The inner product
of the two vectors are denoted by (-, -). The spherical harmonics Y,,...(9, ¢) describe the directional
dependency of each order n = 0,1,... and degree m = —n,...,n. The radial dependency of the
sound field is described by the spherical Bessel functions j,(-). A short-hand notation Zfﬁm is used
to represent the double summation >~>° ;> . The complex conjugate is denoted by asterisk in
superscript (-)*, the imaginary unit by 7 and the speed of sound in m/s by c. The angular frequency w
is related to the temporal frequency f by w = 27 f. The time harmonic term e** is omitted for brevity.

We assume that the sound field of interest S(x,w) can be expressed as a superposition of plane waves
arriving from various directions. The spherical harmonic representation then reads ' [Se¢- 2:4]

S(x,w) = Z 47ri"jn(%r)pnm(w) Yom (0, 6). (2

n,m
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where P, (w) are the spherical harmonic coefficients of the plane wave amplitude distribution P(7n,w),
. 2T ™
Panlw) = [ [ Plw) Y, 0,0)" sinodsdo. 3)
0 0

Both P(n,w) and P,,,(w) fully describe the sound field at any point within the homogeneous region.
In the context of spherical array processing, it is of interest to extract the coefficients P, (w) from an
array measurement or recording. Note from (2) that, irrespective of the plane wave distribution, the
radial dependency of the individual modes is characterised by j,,(<r). If an array of omnidirectional
microphones are placed at a fixed radius r = r, the spherical harmonic coefficients of the captured
sound field are given as

Spm = 47Tinjn(%7”0)pnm(w)' (4)

Extracting ]Bm,,,(w) from the measurement thus requires the design of an inverse filter of i" j,,(2ro),
which is referred to as the radial filtering in the literature.

In this study, we consider an open spherical array, where the pressure sensors (omni-directional
microphones) are placed at » = rq. It is assumed that the microphone capsules, cables and the array
structure have negligible effect on the sound field, which allows us to use the free-field boundary
condition. We further assume that the spherical volume surrounded by the microphone array is free of
sound source and scatterer. The sound field captured by the microphones therefore only consists of
sound waves originating from the exterior region.

3 RADIAL FILTER DESIGN

In this section, we present the proposed radial filter design. We attempt to equalise the modal transfer
functions of an interior sound field which are characterised by i" j,,(“ro). The magnitude and phase
are depicted in Fig. 1 forn = 0,.. ., 3. Irrespective of the order n, the envelope of the magnitude decays
with the rate of —6 dB/octave at high frequencies (<o > n). For n > 1, the low-frequency responses
are dominated by the n repeated zeros at w = 0, resulting in a spectral slope of +6 - n dB/octave. The
spherical Bessel functions also have infinite number of simple zeros spanning the entire frequency
axis 101Sec. 10.58] 'Except for n = 0, the zeros do not have an analytical expression and thus have to be
computed numerically. Since j,(-) are real-valued, the phase responses are primarily determined by
the term ™, which corresponds to n - 90°. The zero-crossings of the magnitude responses introduce an
additional phase of 180° at the null frequencies.

The proposed radial filter has a parallel structure and can be expressed by a summation,

M—-1

HY =" b0 HY, (5)

pn=0

where H ;" are the individual IIR filters and b}’ the corresponding weights. The rationale behind this
design is that each IIR section H;” is used to equalise the spectral notch that occurs at frequency
f.”. The lIR filters will therefore have the shape of a peaking equaliser, whose centre frequencies
are matched to the notches of the spherical Bessel functions. The size of the parallel structure M is
determined by the number of f{” that lie within the frequency band of interest. The first filter H{" is
used to equalise the nth-order nulls at f = 0 whereas the other filters H,". | are used to equalise the
zeros at jél Since the filter design process is the same for different harmonic orders, the superscript
(-)™ will be omitted in the remainder of this paper.

An important consideration in the filter design process is limiting the maximum magnitude boost (or
dynamic range) of the frequency response function. Otherwise, the radial filter would not only equalise
the nulls but also excessively increase unwanted components, such as the self-noise of the microphone
capsules, errors due to position inaccuracies, or sound waves that might be caused by scattering inside
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the open sphere. Moreover, the computation of the null frequencies f, relies on an estimate of the
speed of sound c. A deviation from the actual value might introduce additional spectral distortions. In
order to achieve robustness against such noise, errors and inaccuracies, the Tikhonov regularisation
scheme is commonly employed in inverse filter design. The maximum gain of the filter is explicitly
controlled by the regularisation parameter as will be described below.

In the proposed method, the regularisation of each IIR filter is performed independently. In the Laplace
domain, the regularised inverse of the nth-order zero at s = 0 can be expressed as
(s7)"

Ho(s) = ¢ = — .
s+ B0 (" TG (s — £50.)

(6)

where 5y € Rx( is the regularisation parameter. The second equality shows that the inverse filter
consist of n zeros at s = 0 and 2n poles at s = %5071. It can be shown that 3, ; are uniformly distributed

L
on a circle with radius 53",
S04 = 50%" LelEFECHDL =0, 2n—1, (7)

which coincide with the poles of a Butterworth filter'! [56¢-221 As 53, — 0, Hy(s) approaches the
direct inverse 1/(*2s)". The same regularisation can be applied for the complex conjugate poles at
s = Fiw, = Fi2n f,,
[(T—Os—iwu)(ms—l—iwu)]* 1 (s+itwe)(s —iswy)
H“(S): o < ; T0 < ; 2 AT 30 ~ .
[(Ts —iw) (s Hiw) P+ B (F)7 Tlze(s — £8u0)

: (8)

which consist of 2 zeros on the imaginary axis and 4 poles. The closed-form expression of 3, ; reads

1 1
j:\/ 1+filii\/ 1+ 2 41
Iz I

where the index [ corresponds to each quadrant of the complex plane. In (7) and (9), increasing the
regularisation parameter 3, pushes the poles away from the imaginary axis, thereby reducing the peak
of the magnitude response. The peak magnitude of each IIR filter denoted by g,, € R is related to
the regularisation parameter by 3, = 1/(4 - g7,) or equivalently by g, = 1/(2,/B,/). The prescribed
maximum boost is commonly given in dB which will be denoted by G,, = 201log;4(|g,l)-

; (9)

P
sl \/5‘

It is worth emphasising that half of the poles in (6) and (8) are on the right half-plane in the Laplace
domain. For a stable realization, the corresponding poles have to be implemented as non-causal
systems. Since the causal and noncausal poles are symmetric with respect to the imaginary axis, the
forward-backward technique can be used which allows a zero-phase filtering '2[S¢¢- 1312 This consti-
tutes an offline processing, where we (i) time-reverse the input signal, (i) filter with the noncausal poles,
(iii) time-reverse the signal again, and (iv) filter with the causal poles. A quasi-online implementation is
possible by using a frame-by-frame processing and truncating the output. This is, however, beyond the
scope of this paper and will not be considered.

The Laplace-domain filters (6) end (8) are discretised by using the matched z-transform 13 [Sec. 8:3.4]
The zeros and poles in the Laplace domain are mapped into the z-domain by

20 = et (10)

Bug = ero o, (11)

where 2, ; and Z,; are the z-domain zeros and poles, respectively. The sampling period is denoted
by T = i for a given sampling frequency fs. The matched z-transform preserves the characteristic
frequencies of the individual zeros and poles as long as they are within the Nyquist limit. Applying this
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mapping to the continuous-time filters (6) and (8) yields discrete-time IIR filters,

1 (1—z1n
Ho(z) = — (12)
0( ) (?)n l2:01(1—ZOJZ_1)
and
1— 1 1— —1
H() = oy St W52 ) gy (13)
(%) [T = Zu0271)
respectively.

A common practice in radial filter design is to impose a limit on the maximum magnitude boost. This
can be achieved by optimising the regularisation parameters 3,, and the weights b,, in the proposed
filter structure (5). Instead of performing an extensive parameter search, a simple two-step optimisation
is used in this paper. In the initial step, M prototype filters ﬁu(z) are constructed by using (12) and (13).
The variables associated with the first step will be indicated by the hat symbol (*). The regularisation
parameters are set to Bu =1/(4- g2 .%); Vi, where gmax denotes the maximum allowable boost (Gyax
in dB). The initial weights E# are computed in such a way that the equalised response matches a target
response Hi(w),

M—-1

X(w) S by Hu(¢%T) = Hyw), |w| < s, (14)
pn=0

where X (w) =i"j,(%ro). The target response H;(w) can be a unit magnitude or a low-pass function
depending on the frequency range of interest. Minimising the mean squared error between the
equalised response and the target response at control frequencies wy, k =0,1,..., K — 1 (K > M)
yields the least squares solution, which can be expressed in matrix form as

b= W' W)t (W), (15)

where [b],, = b, are the weights, (W], = X (w) H,(¢*T) the spherical Bessel function filtered by
each IR filter, and [h];, = Hi(wy) the target response. The individual peaks of the combined response

can be approximated by b,, - gmax, ON the assumption that each IIR filter HM(eWT) is dominant around
w = wy,. The deviation from the prescribed boost gm.x is compensated in the second step. A new

set of filters H,,(z) are constructed with regularisation parameters 3, = b2 - 3, = b%/(4 - ¢2,,,) which
correspond to maximum boost levels g, = gmax/i)p,- Similar to (15), the optimal weights b,, in the
minimum mean squared error sense are given as'4'3,

b=WHIw)"t (WHh), (16)

where [b],, = b, and [W],, = X (w) H,(e’*T). The final design is defined by b,, and H,,(z) [cf. (5)]. The
iterative process can be continued for a further refinement. However, the design framework described
above was found to be sufficient for the purpose of radial filter design.

4 EVALUATION

In order to evaluate the proposed radial filter design, a numerical experiment is carried out for an
open sphere with a radius of rq = 0.25 m. The number of IIR sections is M = 15 for the Oth-order
harmonic mode and M = 16 for higher modes (n > 1). We consider different levels of regularisation
that correspond to maximum boosts of G, = 10, 30, 40,50 dB. The sampling frequency is set to
fs = 48 kHz and the speed of sound is assumed to be ¢ = 343 m/s.
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Figure 1 — Magnitude and phase responses of the proposed radial filters (modal orders n =0, . .., 3,
radius ro = 0.25 m, number of lIR sections M = 15 forn = 0 and M = 16 for n > 1, sampling
frequency fs = 48 kHz, uniform distribution of K = 1024 control frequencies in [1 Hz, 12 kHz]).
The thin gray lines indicate the response of the individual IIR filters H,(z) that are scaled with
the respective weights b, [cf. Sec. 3]. The modal frequency responses i"j,,(“ro) and equalised
responses are indicated by blue and black curves, respectively.
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4.1 Modal equalization

The frequency-domain properties of the radial filters are first examined. In Fig. 1, the transfer functions
of the radial filters (n = 0,1,2,3) are depicted in orange. Overall, the magnitude responses stay
below the prescribed maximum boost G.,.x = 40 dB. A slight overshoot (< 1.8dB) is observed at high
frequencies. Since the regularisation becomes stronger at higher frequencies, each IIR filter (depicted
with thin gray lines) is no longer dominating the combined response around the poles. This causes an
underestimation of the spectral peak when determining the regularisation parameter. However, the
deviation is marginal. The solid black lines in Fig. 1 indicate the equalised responses which is the
frequency-domain product of the spherical Bessel functions (blue) and the radial filters (orange). A flat
magnitude response can be observed over a wide frequency range. Spectral notches can be seen at
discrete frequencies which coincide with the nulls of the spherical Bessel functions. The IIR sections at
higher frequencies require stronger regularisation to compensate the constant decay of the spherical
Bessel functions. This leads to an increased deviation from the target response. The compensation of
the phase is also successful. The equalised responses exhibit zero-phase except for minor deviations
around the pole frequencies. Slight fluctuations are due to the phase errors introduced by the matched
z-transform that was used to map the Laplace-domain poles into the z-domain [cf. Sec. 3].

4.2 Modal beamforming

The radial filters are now applied to a simulated measurement, where @ = 120 omnidirectional
microphones are distributed on the sphere by using a t-design of degree 15. The highest spherical
harmonic order that can be computed by numerical integration is N = 7. This sets the upper bound
of the operation frequency range, referred to as the spatial aliasing frequency faiias = ¢ N/(27rg) =
1528.5 Hz'[Sec- 411 A sound field of a single plane wave is simulated which arrives from the positive
x-axis, i.e. (Opw, ppw) = (90°,0°). The plane wave carries a band-limited pulse with cut-off frequency of
2.5 kHz, whose spectrum is a zero-phase sixth-order Butterworth low-pass. The microphone signals
are simulated by using fractional delay filters based on the Lagrange interpolation'®.

The time-domain signals are transformed into the spherical harmonic domain by using the pseudo-
inverse of the spherical harmonic matrix. This can be expressed as a numerical integration ' [Fa- (3-32)]

Q
Snm (t Zam s(ro,0q,¢q,t), n=0,...,N, m=-n,...,n (17)
qg=1

where (r9,6,, ¢,) are the coordinates of the gth microphone. The quadrature weights denoted by

ay™ ensure the orthogonality of the spherical harmonics up to the Nth order under the numerical
mtegratlon The spherical harmonic analysis (17) yields (N + 1) = 64 signals. The radial filtering
operation, denoted by (-), is then applied to 3,,,(t),

yielding the coefficients of the plane wave amplitude functions p,,.,.(t). As discussed in Sec. 3, this

requires an offline processing using the forward-backward filtering technique. Finally, the beamformer
output is obtained by performing the spherical harmonic expansion for look directions (6;, ¢;),

ela(bla anm nm 9l7¢l) (19)

No additional modal weighting or global equalization is applied. We evaluate the beamformer output for
6; = 90° and ¢; € [—180°,+180°). Since the configuration is nearly rotationally symmetric with respect
to (Opw, Ppw), this represents the results for all possible look directions reasonably.

Fig. 2a and Fig. 2b show the beamformer output in the time and frequency domain, respectively. The

time-domain responses are normalized to 0 dB with respect to the peak value at on-axis and the
frequency-domain responses to 0 dB with respect to the on-axis magnitude response at 1 kHz. It can
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Figure 2 — Impulse responses and frequency responses (magnitude) of modal beamformer using
an open spherical microphone array (@ = 120 microphones, radius » = 0.25 m, modal order N = 7,
maximum boost level G.,.x = 10, 30,50 dB). A single plane wave arrives from (¢, ¢pw) = (90°,0°).
The beamformer scans the horizontal plane with look directions ¢; € [—180°, +180°).

be seen that the temporal response of the beamformer is more compact for smaller G,,.x. A strong
regularisation limits the spectral speak of the radial filter, thereby reducing the pronounced ringing in
the time domain. Allowing a higher boost (e.9. Giax = 50 dB) increases the temporal extent of the
beamformer output. This might lead to negative perceptual effects, such as colouration.

The influence of regularisation on the spatial resolution of the beamformer is well demonstrated in
Fig. 2b. At each frequency, the modal attenuation depends on the spectral shape of the spherical
Bessel functions and the regularisation parameter. This leads to a frequency-dependent beam width
which is determined by the relative gain of the individual modes. Irrespective of G,.x, the width of the
main lobe gradually increases towards the low frequencies This is mainly attributed to the nth-order
zeros of j,(-) which can only be compensated to a limited extent and requires increasingly stronger
regularisation. As the frequency approaches w = 0, the higher-order modes are attenuated and the
effective order of the beamformer decreases. Some local fluctuations of the beam pattern can also be
observed. Two exemplary frequencies are as indicated by ‘+’ in Fig. 2b (middle). These frequencies
(f = 686.0 Hz and f = 981.2 Hz) coincide with the spectral nulls of the 0th- and 1st-order spherical
Bessel functions (cf. Fig. 1), where a stronger regularisation is required to keep the magnitude response
within the permissible range. A relatively uniform main lobe and a flat on-axis magnitude response is
achieved for G,.x = 50 dB which comes at the expense of a smeared temporal response and a risk of
boosting unwanted noise.
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5 CONCLUSION

A radial filter design was proposed for open spherical microphone arrays. In order to equalise the
spectral notches exhibited by the modal transfer functions, a set of peaking IIR filters were used in a
parallel structure. The Tikhonov regularisation was applied to the individual IR filters, which results in
repositioning of the poles. The proposed design enables an efficient implementation of the radial filtering
compared to the frequency-domain processing which commonly requires a large DFT length. The
spectral properties of the filters were shown to be appropriate both in terms of modal equalisation and
regularisation. As a proof of concept, the proposed radial filter was used in a plane wave decomposition
beamformer and the spatial properties of the output were examined. The proposed idea can be further
extended. For instance, the zeros of the IIR filters can be shifted or removed to achieve a smoother
magnitude response. A minimum-phase system can also be constructed by moving the non-causal
poles to the left half-plane, which requires a deeper understanding of the perceptual impact of the
resulting phase distortions.
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