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The general phenomenon in which we are interested is the
interaction of sound with jets, or more precisely the
interaction of sound with the vortex sheet separating
two fluids in relative motion.

Three particular cases will be discussed. The first
is that of an infinite plane vortex sheet and a line
source of sound parallel to it and orthogonal to the
direction of flow. The second is‘a two dimensional jet
bounded by plane vortices, again with a line source, and
finally an infinite cylindrical jet containing a point
source. In each case the Mach number of the flow is M
and we assume a harmonic source havingtime dependence
exp(ium) or exp(ikat) withcnska.
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A detailed analysis for the plane vortex sheet has
been published for the case M<1 (Jones & Morgan, Proc.
Camb._Phil. Soc. 1972 2g, 465) and a paper dealing with
M>1 is in Press. Because of the relative simplicity of
the problem the main features of the mathematical treat-
ment and difficulties will be reviewed first for this
case.

The mathematical form of all three problems is to
solve:
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In the flow V" - (bafl‘gij ¢ ‘0
I. ‘ = - oIn ambient fluid v ¢ + ‘N 3‘! *3

together with the appropriate linearised boundary
conditions. (In this case the source is assumed to lie
in the stationary r1uid); A formal solution to this
problem can in eaCh case be obtained in a straight-
forward way using Fourier-Laplace transforms. This
corresponds to taking a solution of the form

4’A ‘ jc §(“:3) Gdav‘l“ (2)
'where for k real and positive the contour C is (-~,-0
modified to avoid branch cuts in the complex u-plane

 



 

in a way which makes ¢ satisfy the radiation cond—
itions at infinity, 1.3. makes ¢A an outgoing wave._

Trench cuts

Fig.2. Contour in complex u—plane

The kernel i can be found uniquely once all the
boundary conditions are satisfied, and the corresponding
field ¢ seems well behaved, being finite everywhere
and decaying in the correct way at infinity. It is not
however the solution to our problem though this is far
from being immediately obvious. Trouble only arises
when attention is turned from the case of an harmonic
source to that of an impulsive source 8(t) at time t=0.
The solution p to the impulsive problem is given by
a simple Fouriér transform

a cot

P.(k)= L ¢n‘“’)¢‘ ‘1‘” \(5)
This can be evaluated exactly for the infinite sheet

and the result is that p (t) is non—zero for all
negative times. This cléarly violates causality and so
if we accept that the physical system must be causal
p and ¢A cannot be correct. It may be worth noting
that the non-causal part of p corresponds to a part of
d which seems quite inoccuou since it decays
efiponentially with distance. It therefore satisfies
Sommerfeld's radiation conditions, and we conclude that
these conditions are not sufficient to make a solution
causal.

The only way open to us to alter the solution ¢ is
to add onto it any solution of the homogeneous probéem,
that is the problem with no source term present. Such
homogeneous solutions correspond to poles of the
integrand §(u;y). For the infinite sheet these are at
the zeros of

AM a (I-M-o‘ (I-m‘“ +((-—n-)‘— w)"1 (4)

There are only two of these for M<2, at u and u'
shown in Fig.5. 0 0’

duo

Fig. 5.

It turns out that a homogeneous solution given by
integrating around the small circle about u shown above
in the formula (2) must be added to make thg solution
causal. A solution associated with u' could also be
rejected on physical grounds as it woBld increase
exponentially with distance from the vortex sheet.

This one pole 11° of the kernel completely alters
the physical field. The addition of the extra homo—
geneous solution introduces an instapility wave, which
is associated with the Helmholtz instability of the
vortex sheet. This wave decays exponentially with
distance from the sheet but increases exponentially with 



 

distance downstream (and so violates the Hommerfeld
conditions). It appears in consequence to be confined
to the downstream sector illustrat d in Fig.4. This
sector always makes an angle of 45 with the vogtex
sheet in the still medium andan angle 8(M)4<45 in
the moving one. As H increases fl decreases until at
M=2J§ fl=0 and the instability no longer exists.
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Fig.4. Sector of
instability wave.

Much more can be said about the structure of the
remainder of the sound field'but in this paper we will
restrict our attention to these instability waves which
in many practical situations seem likely to have_a
dominant influence.

When we come to the cases of the jets much of the
basic outline presented above remains true, though
greater difficulties are encountered in the details.
For the cylindrical jet, for example, in the region
outside thefljet the kernel takes the form

_ “‘9 H9761”) In(flwr.)( J40.) '
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where vand w are functions of u. In this case it is
impossible to find the exact solution to the impulsive
source problem in order to discover whether or-not the
initial choice of contour of integration gives a causal
solution. It is also impossible to find exactly the
positions of all the poles of the integrand. It is
easily shown however that each term in the sum (5) has
an infinite number of poles, and these may be roughly
located in the limits kr very small and very large,
where r is the radius 0 thg jet. For example we
have for kr1>51 and —M>—(1-M ) the distribution shown
in Fig. 5. - , I
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L Fig.5. Distribution of
g poles in typical case.

Tam (J.F1.Mech. 1971 fl§,747) who has considered the
instability of a cylindrical jet used a very crude
ap roximation to the kernel which shares with the form
(5 only the property of having a pole near u (for
large kr ). His kernel in fact has only two floles —
at u an u' which leaves no difficulty in choosing uo
as the one 80ntributing the instability wave.

The earlier work on the single vortex sheet shows
that causality is the surest guide to whether or not a
pole gives a contribution. An alternative form of this
criterion is needed now however since the exact impul-

sive solution is not available. This is chesen to be

 



 

that o (k) can not be causal if it is singular in the
lower half of the complex k-plane. This is a valid
condition since the behaviour of b (k) is such as to
allow the contour of integration ifi (3) to be closed in
the lower half of the k-plane when t<0. So p (t) for
t<O is the sum of the contributions of the integrand at
any singularities of ¢ (k). It is possible to show
exactly that §nhas only one pole in the lower k-plane,
which proves that o can not give a causal solution.
It is then only a matter of showing that the singularity
in (k) is removed by altering the contour C of Fig. 2

[to include a contribution from a single pole - which is
close to u for high frequencies. An interesting con-
jecture suggested by our experience but which has not
been proved for all frequencies is that a pole gives an
instability wave if and only if it is in the first
quadrant of the u-plane. Since poles in the other
quadrants would give unphysical waves increasing expon—
entially upstream or away from the sheet this seems
plausible.

Coming now to a brief description of the instability
waves themselves we find little new in the high frequen-
cysease. As might be expected they continue to be
restricted to a downgtream sector which for both jets
makes an angle of #5 with the direction of flow, at
large distances from the jet.

In the low frequency limit however, when the wave-
length becomes large compared with the width of the jet
differences emerge. It is convenient to distinguish
the symmetric from the asymmetric part of the sound
field. For the cylindrical jet the symmetric part is
the term with n=0 in (5), independent of 9. For the
two dimensional jet it is half the field produced by
having two symmetrically placed sources. In either
case the asymmetric part of the field is the remainder.
The results can then be summarised in the table below.

Cylindrical 2-Dimen} Symmetric Pole at Ang1e\Por
et ‘et u: sec or
x Yes 1 -> o

1: Yes '1/M 5' 0 o
x No (1+1)4N 1+5 ‘ “"690

x No pelt)" c‘"” 60

Table1. Low frequency behaviour.

Notice that the symmetric part of the instability wave
is hardly present in the external medium for very low
frequency for either jet, since the angle tends to zero.
The asymmetric field for the two dimensional jet is
confined to a sector with angle 60 for all H, but the
corresponding angle for the cylindrical jet increases

with M. It is given exactly by

s1n<v>= (<<<4+n“)%+m2-2>/2n2)*>. ’ (6)
and is approximately 45° when H-O, 50° when M-1 and

increases up to 90 as H tends to infinity. It is

important to notice that the low frequency instabilities
exist for all M, though the high frequency ones are cut

off for n-zfé. -
It seems then that to prevent a jet amplifying sound

it must have a velocity nearly three times that of sound
(to eliminate hi h frequencies) and the sound source has
to be symmetric %to reduce the low frequencies).  


