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Introduction

In an attempt to clarify thephenomenon of dynamic plastic buckling. the res-

ponse of a simple model has been examined in References [l] and [lehich also

contain citations to other dynamic plastic buckling studies on various struc—

tural members. More recently, the dynamic plastic buckling of a stringer-

stiffened cylindrical shell impacted axially has been examined in Reference

[3] using a perturbation method of analysis. This note contains further

numerical results and observations for this particular case.

Theoretical Details

A perturbation method of analysis was developed in Reference [3] for a stringer-

stiffened cylindrical shell with an attached mass M which travels with an

initial velocity V and strikes a rigid wall. The solution consists of two

parts: dominant or axisymmetric uniform behaviour and perturbed or axially

varying behaviour. The displacements which characterise dynamic plastic

buckling develop from any initial imperfections which are present in the

initial geometry of the shell. Further details of the theoretical procedure

are presented in Reference [3].

If a stiffened cylindrical shell of mean radius a and length L has an initial

radial displacement imperfection field 3' which consists of an infinite number

of components (wT‘,) each one of which varies with sin(nsx/L), where x is an

axial coordinate. then it transpires that the buckled profile is characterised

by a critical mode number nC and (110 dimensionless perturbed radial displace—

ment (one = wg‘t/a) in the critical mode at the cessation of dominant motion is

an: = tuna)ch , (1)

where anc = E‘L‘c/a and E 0(0) is a displacement amplification function. The

displacement amplification function is a function of o = h/a (h is cylindrical

shell thickness), 6 = all... 3 = l + M/m (m is mass of cylindrical shell and

stitfeners)I Y = E‘lo (E' is tangent modulus and u is yield stress).

K = ovzlo (o is density of material), A" = A/bh (A is cross-sectional area of

a stiffener, b = ZWa/S. S is number of stiffenets)I e* n c/a (e is eccentri-

city of a stiffener measured from the mid-surface of a cylindrical shell),

and lR = l/azbh (I is second moment of area of a stiffener about the mid-

surface of a cylindrical shell).

E\'umerical Results

The curves in Figure 1 demonstrate the growth of the dimensionless perturbed

radial displacements (dnc) with dimensionless velocity (squared) (K) which is

obtained using equation (1) and Lhe numerical results in figure 6 of Reference

[3] for two values of the dimcnsionless initial radial imperfections (ant)
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FIGURE 1. GROWTH pr: RADIAL DISPLACEMENTS WITH K FOR u=|3=0‘1.
A‘= 0-25. 1": 00011.55, i=3. 5 =4 5 AND 5:10,

 FIGURE 2 ISO-DAMAGE CURVES FOR (1-3 = 04. A': 0-25, “momma.

i=3. 6aL-5 AND 5:10.

30    



 

Proceedings of The institute o! Acoustics

DYNAMIC PLASTIC BUCKLING 0P STIFFEXED CYLINDRICAL SHELLS

, x n‘ for e'= 0-1

0 n‘- for'e'=-0-1

          

  

o 3 6 9112
FIGURE 3. VARIATION or cnmcm. M005 NUMBER (rm AND DISPLACEMENT AMPLIFIMTION

FUNCTION (5,510)) WITH X FOR (1: B = 0-1. A'=o-s. 1' = ooosL, 6: LS.
K=0-Z AND 5:15.
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FIGURE L EncIO) VERSUS NUMBER (F RECTANGULAR STIFFENERS IS) FOR

CONSTANT A, (1 =02, e=o-1j=3. o 6:45, K=o-2, @a=L-s_

6(1+A'|K=1-oe, @(1+A')UK-1-os,M=c0N51ANT.A- =o-2 AT s=L

©(1+A')UK= 0-99, M=CONSTANI A'=o~1 AT S=L.
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lying in the critical mode. The dimensionless dominant displacement 05") is

also shown for comparison purposes. These numerical results are replotted as

iso-damage curves in Figure 2 which clearly demonstrate the deleterious

influence of initial imperfections in the critical mode.

It is evident from the numerical results in Figure 3 that the displacement

amplification function and therefore the perturbed radial displacement according

to equation (1) is sensitive to the material parameter (7) while the critical

mode number is not.

The variation of Enc(0) with number of stringer stiffenets (S) is shown in
Figure A which is prepared using data from Figure 1A in Reference [3] together

with some new numerical results. The cross-sectional area of a stiffener

(A) is identical on each of the curves Q to @, while the initial kinetic

energy is constant on each of curves ® to In addition, the end mass

ll is constant along curves (2D and Q . The stiffeners on curve G) have one

half the cross-sectional area of those on curve Q at a corresponding value

of 5.

It is evident from figures 1 to A (for stringers with rectangular cross-

sections) and other numerical results in Reference [3] that it is more efficient

to place stiffeners on the outside (e* > O) of a cylindrical shell impacted

axially than on the inside surface (e* < 0). It is also interesting to observe

that curves ® and O in Figure b for inside stiffeners (e* = -0.2) have a

minimum and therefore suggest an optimum design with approximately 10 to 12

inside stringers. However, the initial momentum of the system increases 7.162

and 3.982 with 5 along curves Q and Q, respectively. Furthermore, these

optimum designs {or inside stiffeners have greater potential growth of initial

radial displacement imperfections than any of the cases with outside stiffeners

in Figure 6 regardless of the value of S.

The sensitivity of the theoretical analysis to 3 was also explored for the

particular case in Figure 3 with T = 3. 1t transpires for e" = 0.1 that

Enr:(0) varies from 13.67 to l3.77 as 3 increases from 1.5 to 10 and K is

reduced from 0.6 to 0.09 in order to maintain a constant initial kinetic

energy. Enc(0) increases from 147.5 to 151.9 when e“ = -O.l, and the critical

mode number is 15 for all the calculations regardless of the sign of e*.

Finally, it may be shown that the theoretical results are also valid for a

stationary stiffened cylinder struck by a mass M travelling with an initial

velocity V. In this casc u must be interpreted as film.
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