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Three models of nonequilibrium media are discussed: the stationary nonequilibrium gas with the 

exponential relaxation model, the heat-releasing gas with the generalized heat-loss function, and 

the heat-releasing plasma in a magnetic field. It is shown that under conditions of the acoustic 

(isentropic) instability of these media, evolution of nonlinear acoustic and magnetoacoustic 

waves is well described by the generalized nonlinear acoustic equation. 
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1. Introduction 

We present a brief overview of the general properties of the acoustic wave amplification in three 

different models of the media with heating and cooling processes. Based on the gas-dynamics or 

magnetogasdynamics equations, we obtain the generalized nonlinear acoustic (magnetoacoustic) 

equations and show that they have similar forms but with different nonlinearity, dispersion and dis-

sipation coefficients. Using these equations, we show the disintegration of weak shock waves into a 

sequence of the self-sustained acoustical (magnetoacoustic) pulses. Parameters of these pulses are 

found analytically. We show the strong dependence of their amplitudes on the ratio of plasma pres-

sure to magnetic pressure. 

2. Acoustical disturbances in the stationary nonequilibrium heat-
releasing media with the exponential relaxation model 

The system of equations describing the dynamics of the gas-dynamic perturbations in the sta-

tionary vibrational excited gas with the exponential relaxation model has the form: 
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In Eq. (1), vE  is the vibrational molecular energy, eE  is its equilibrium value, v  is the vibra-

tional relaxation time, and   is the power of an external heat source (in particular, electric pumping 

in the discharge, chemical or optical pumping), sustaining the nonequilibrium degree 

000000 )( TTEES vev  ; PT ,,,v   are, respectively, the velocity, temperature, density, and 

pressure. I=  is the heat loss, m is the molecular mass, xvtdtd  /// ,   is the shear vis-

cosity coefficient,   is the thermal conductivity. 

Linearizing (1) for small acoustic perturbations, we obtain that the acoustical increment has the 

simple form:  
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where   is the second (bulk) viscosity coefficient, )/1/1Re(3/4 PV CC   , Sndc  is the 

sound speed. The general condition of acoustically instability is 

 0)(   . (3) 

Here,  
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are the complex heat capacities of the relaxing medium at constant volume and at constant pres-

sure; u, h = u + P/ are the internal energy and enthalpy of the medium per one molecule; 

TvVV SCCC 00   , )1(00   TvPP SCCC   are the low-frequency heat capacities at con-

stant volume and constant pressure in the vibrationally excited gas; ,00 ,T 00, ev EE  are the stationary 

values; 00 / dTdEC ev  ;  00 ln/ln TvT   ; ),( 000  Tvv  ; VC  and  PC  are the frozen (high-

frequency) heat capacities. 

The second viscosity and the sound velocity have the usual forms for media with a single relaxa-

tion process: 
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Here, 0 is the low-frequency second viscosity coefficient; mTc /0
2

   and mTc /00
2
0  are 

high-frequency and low-frequency sound speeds, respectively;   VP CC / , 000 / VP CC  are the 

frozen and equilibrium adiabatic indexes, respectively; m is the molecular mass.  

The second viscosity coefficient (6) is negative under the condition  TVvth CCSS  /0 . 

This condition corresponds to the positive feedback between the acoustical perturbation and 

nonequilibrium heating, i.e. nonequilibrium heating increases in compression regions and decreases 

in rarefaction regions of acoustical perturbation. Such a medium becomes acoustically active (the 

well-known Rayleigh instability criterion). 

Acoustic instability is stabilized as a result of non-linear transfer of energy from low-frequency 

unstable modes to stable high-frequency modes. Nonlinear evolution of acoustic disturbance up to 

the second order of smallness is described by the generalized nonlinear acoustic equation (GNAE), 

which we obtained in the following form [1]: 
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Here, 
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For 00 S , Eq. (9) leads to 2/)1( 00   . Equation (8) is valid for media with the small disper-

sion coefficient 1/)( 222
0   cccd . It is the generalized acoustical equation of relaxing media 

as it describes acoustical perturbations independently of their spectrum.  

 

Figure 1: (a) Structure of the self-sustained pulse. (b) – separatrix loop which corresponds to the self-

sustained pulse in the phase plane. 

 

In case of instability (3), according to Eq. (8), the weak shock waves with amplitude 

 02  mi  and localized perturbations disintegrate into a series of self-sustained wave 

solitary pulses shown in Fig. 1. For 0 , the shape, amplitude and speed of pulses are deter-

mined in the forms: 
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3. Acoustical disturbances in the heat-realising media with 
the generalized heat-loss function 

In this section, we show that an acoustic instability can lead to the formation of self-sustained 

solitary pulses in another heat-realising media model (without relaxation). Initial system of equa-

tions (1) changes to: 
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Here, generalized heat-loss function  I  depends on temperature and density. The condi-

tion for isentropic (acoustic) instability is 
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where   is the adiabatic index (the ratio of specific heats). Similar to (3), inequality (12) coin-

cides with the negative bulk viscosity existence [2]. For system (11), 
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In Eq. (13), mTkB 000 /  is the characteristic time of heating, ),( 000 T  is the heating rate 

in the stationary medium, mkcc BVP /  , 0000 /  mTkc TBV , 000000 /)(  mTkc TBP  , 

00 ,0 )/( TTT T   , 
00 ,0 )/( TT   .  

Nonlinear evolution of acoustic disturbance up to the second order of smallness, small dissipa-

tion and dispersion coefficients is described still by the same GNAE (8), but with different coeffi-

cients: 
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4. Magnetoacoustic disturbances in the heat-realising media with the 
generalized heat-loss function 

Let’s consider more complicated case of heat realising plasma in the magnetic field. The medium 

under investigation is assumed to be fully ionized and electrically neutral. The influence of viscosi-
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ty and thermal conduction is neglected. With the foregoing as background, the initial system of 

equations can be written in the following vector form: 
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In system (17), PT ,,  are density, temperature and pressure, respectively; jBV


,,  are velocity 

vector, magnetic field vector and current density vector, respectively; 
Б

k is the Boltzmann constant; 

m  is the mean particle mass; с  is the light speed in vacuum;   is the electric conductivity coeffi-

cient. 

The magnetic field vector with absolute value 0B  lies in x-z plane oriented at angle   to z-axis. 

We investigate wave propagation only along z-axis and neglect variation of perturbation along x- 

and y- axis. 

Increment (2) changes to 

 

     

  222
,

3
,

22
,

2
222

,
0

2

22

cos

Sndasfsf

Sndsfasf

cccc

cc
c

cc

























 ,  

where  

          22222222
, 45.05.0 azSndSndaSndaslf cссcсcc   , 0

2
0 4/ Bca  , 222 cosaaz cc  . 

 

The condition of magnetoacoustic amplification corresponds to 
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 are low- and high-frequency magnetoacoustic wave speeds of fast (f) and 

slow (sl) waves. 

Similar to the previous two models discussed in sections 2 and 3, nonlinear evolution of acoustic 

disturbances up to the second order of smallness, small dissipation and dispersion coefficients are 

described by same GNAE (8), but with different coefficients [3,4] 
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The coefficients 


  and 
0

  determine wave dissipation caused by the finite electrical conduc-

tivity in the high- and low-frequency range of the spectrum, respectively. 

In the case of absence of the magnetic field, expressions (19), (20) for high-frequency and low-

frequency nonlinearity coefficients equal (16). 

The self-sustained pulse amplitude p  depends on slope angle   and type of magnetoacoustic 

mode (fast or slow). Moreover, there is the strong dependence p  on the magnetic field. In Fig .2, 

the typical dependence p  on plasma beta 2
00 /8 BPP    is shown. 

 

 

Figure 2: The dependence of the amplitude of the slow (solid line) and fast (dashed line) magnetoacoustic 

self-sustained pulses on plasma beta. Points 1, 2 correspond P =0.5 and 2, respectively. 

As it can be seen from Fig. 2, an increase of the external magnetic field (plasma beta decreases) 

reduces the amplitude of fast wave MHD and increases the amplitude of slow waves MHD. 

An amplitude of magnetic field perturbations in the self-sustained pulse equals 
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a)                                                            b) 

 

c)                                                     d) 

Figure 3: The disintegration of the fast (a),(c) and slow (b),(d) magnetoacoustic waves in the self-sustained 

pulses in different time moments. 2P  (а) ,(b) ; 5.0P  (c), (d); 4/  . 

Results of disintegration of stepwise perturbations for different P  are shown in Fig. 3. Parame-

ters of numerical simulations have been chosen in the region of magnetoacoustic instability (18). 
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5. Conclusion  

We have shown that GNAE has the same form in three substantially different models of the heat 

releasing gas. GNAE predicts the disintegration of weak shock waves into a sequence of self-

sustained pulses under condition of isentropic (acoustic) instability. Parameters of the self-sustained 

pulse are determined analytically. Our analysis shows that this decay becomes noticeable in rather 

long acoustically unstable media. Such media can be both laboratory and natural. For example, 

trains of propagating fast and slow magneto-acoustic waves have been recorded in the solar corona 

[5, 6]. The solar corona is an example of a heat-generating medium, which implements various 

types of thermal instability, including isentropic one [7-9]. Another example of the natural medium 

with possibility of the isentropic instability is the interstellar gas. Here, the fibrous structure of 

shock waves is associated with the formation of self-sustained structures in thermally unstable me-

dia [2, 10]. 
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