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Considerable efforts have been made with a view to deriving the eigenpairs of a strongly coupled 
rectangular cavity comprising a flexible panel and five rigid walls, which has frequently been 
employed as a target model for discussing transmission loss of a cavity-backed panel.  The 
eigenpairs of even such a simplistic cavity however have not been found for decades.  The reason 
is obvious: a spatial boundary condition of a distributed parameter system made it difficult to 
solve the eigenvalue problem.  Just recently, the authors succeeded in deriving the eigenpairs of 
the strongly coupled rectangular cavity by introducing a cluster functions that may tackle the 
spatial boundary condition.  As a result of coupling, two kinds of acoustic modes are found to 
appear; standing wave mode and evanescent mode. The former is generated by sound reflections 
in the cavity, whereas the latter by coupling effect. It is likely that the dimensions of a character-
istic matrix of a coupled cavity increase because of a distributed parameter system being dealt 
with.  This paper then presents a clusterization method in order to reduce the computation burden.  
For this purpose, it is shown that the characteristic matrix of a cavity is dominated by a coupling 
coefficient matrix.  Inasmuch as coupling is strictly selective, the coupling matrix is found to be 
expressed in a form consisting of four independent cluster matrices.  It is shown that the eigenpairs 
of the coupled cavity may then be obtained by aggregating eigenpairs of each cluster.   

 

1. Introduction 
The term “coupling” indicates interference between a structural and an acoustic field of a cavity, 

resulting in the shift of the eigenpairs of uncoupled system dynamics.  Depending on the degree of 
coupling, cavity systems can be classified into two categories: a weakly coupled cavity system (or a 
modally coupled cavity) system and a strongly coupled cavity system. 

A weakly coupled cavity system often introduced in sound transmission control problems [for in-
stance, 1,2] is based on the modal coupling theorem established under the assumption that the fluid 
medium is non-dense and the cavity walls not “thin.”  The characteristic of this system is that the 
eigenfunctions of a coupled system remain the same as those of an acoustically rigid walled cavity, 
while only the eigen-frequencies of the cavity change.   

When cavity walls become thin and the cavity gap shallow, the assumption of a modal coupling is 
no longer valid; thus, such a case falls into the second category, i.e., a strongly coupled cavity system.  
Considerable efforts have been made in literature to derive the exact solution of coupled rectangular 
cavity system that comprises five rigid walls and a flexible panel.  Dowell and Voss [3] expressed the 
sound pressure acting on a cavity-backed panel as a linearized form of Bernoulli’s equation; Pretlove 
[4], in an attempt to spatially match the structural and acoustic mode shapes, introduced a cosine 
series expansion for simulating the cavity-backed panel deflection which is originally expressed as a 
sine-sine function, however, convergence of the method was not shown; Tanaka et al. [5-7] presented 
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a set of cluster functions falling on the category of essentially degenerate eigenfunctions possessing 
the same eigen-frequency in common, deriving explicitly the eigenpairs of a strongly coupled cavity.  
Employing the cluster function, Tanaka et al. [8, 9] succeeded in deriving the eigenpairs of a strongly 
coupled eigenpairs, clarifying its fundamental properties. 

This paper begins by overviewing the eigenpairs derivation of a strongly coupled rectangular cavity 
comprising five rigid walls and one flexible panel which Tanaka et al. derived [8, 9].  The basic 
characteristics of the eigenpairs of a strongly coupled cavity are then deciphered with a particular 
emphasis on an evanescent cavity mode emerging as a result of strongly coupling between an acoustic 
field and a structural field.  It is likely that the dimensions of a characteristic matrix of a coupled 
cavity increase because of a distributed parameter system being dealt with.  With a view to overcom-
ing this problem, this paper then presents a clusterization method which may reduce the computation 
burden.  It is shown that the characteristic matrix of a cavity is dominated by a coupling coefficient 
matrix.  Inasmuch as coupling is strictly selective, the coupling matrix is found to be expressed in a 
form consisting of four independent cluster matrices.  It is then shown that the eigenpairs of the cou-
pled cavity may be obtained by merely aggregating eigenpairs of each cluster.   

2. Eigenpairs of a strongly coupled rectangular cavity and clusteriza-
tion 

2.1 Overview of eigenpairs derivation of a strongly coupled rectangular cavity 
 
Consider a rectangular cavity comprising a flexible panel placed on the top and five acoustically 

rigid walls as shown in Fig.1 

  
Figure 1: Rectangular cavity model with a flexible panel on the top 

 
Sound wave equation in the cavity may then be written as 

2 2 2( , , ) ( , , ) 0c x y z x y zφ ω φ∇ + =  (1) 
where c, φ ,ω  denote the sound speed, velocity potential and eigenvalue after coupling.  Note that a 
bar in the expression implies parameters after coupling.  Since the above is a homogeneous equation 
so that as a whole the solution to Eq.(1) may not be written using an expansion theorem, however we 
dare to introduce the expansion theorem using a cluster function iφ/  as  

( , , ) ( , , )i ix y z a x y zφ φ= /∑   (2) 

where the cluster function satisfies the following homogeneous sound wave equation 
2 2 2( , , ) ( , , ) 0i ic x y z x y z iφ ω φ∇ + = ∀/ /   (3) 

Equation (3) denotes that the cluster function is an essentially degenerated eigenfunction with the 
common eigenvalue ω , and hence the superposition of the cluster functions satisfies the homogene-
ous sound wave equation.  The cluster function is further decomposed to 
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( , , ) ( , ) ( )i i ix y z x y zφ ψ η=/  (4) 
where 

( , ) cos cos ( , 0,1, 2,3...)i i
i i i

x y

l mx y x y l m
L L
π π

ψ = =  (5) 

( ) cos
i ii l mz zη γ=  (6) 

whereby the sound wave equation may be rewritten as  
22 2

2
2

i
lm

x y

l m
L L c
π π ωγ

  
+ + =       

 (7) 

Equation of motion of a panel may be written as 
2 24 ( , ) ( , ) ( , , )

z
a z LD v x y hv x y x y zρ ρω φω =∇ − =  (8) 

where D , v , ρ , h , aρ  are flexural rigidity, surface velocity, density of the panel, thickness of the 
panel, and air density, respectively.  The above is intrinsically homogeneous equation, however be-
cause of a coupling effect, the panel behaves in a manner that is subjected to sound pressure from 
inside the cavity which acts and an external force, hence Eq.(8) may then be expressed using an 
expansion theorem, 

1

( , ) ( , )
n

i i
i

v x y b x yϕ
=

=∑  (9) 

where iϕ  is the in vacuo ith vibration modal function that satisfies 
4 2( , ) ( , ) 0ii iD x y h x yϕ ρ ϕω∇ − =  (10) 

and where iω is the associated eigen frequency.   
Next, spatial boundary condition is given by 

( , ) ( , , )
zz L

v x y x y z
z
φ

=

∂
=
∂

 (11) 

Using the expansion theorem, the equation of motion of a panel may then be described as 

( )2

1 1

2 2

1

2( , ) ( , , ) ( , )
n m m

a z ahb x y a x y L a x yκ κ κ κ κ κ κ κ

κ κ κ

ω ωω ρ ϕ ρ φ ρ ψ ηω
= = =

− = =∑ ∑ ∑  (12) 

Likewise, the boundary condition may also be written as 

1 1

( , ) ( , ) ( )
n m

zb x y a x y Lκ κ κ κ κ

κ κ

ϕ ψ η
= =

′=∑ ∑  (13) 

In order to exclude the dependency of location in Eq.(13), it is common practice to multiply the sth 
in vacuo eigenfunction of the panel on both sides of Eq.(13), and then integrate over the panel domain, 
hence 

 
( )
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22
1

( )
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Sb a L
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κ
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β η

ωρ
ω

ω
=

=
− ∑  (14)

  
Equation (14) may also be expressed in a matrix form as 

ω η=b B aΛ Λ  (15) 
where 
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 (17) 

The boundary condition in Eq.(13) may also be written as 

       
1

( )
4

m

s s z
Sb a Lκ κ κ

κ

β η
=

′=∑  (18)

  
The above equation may then be expressed in a matrix form as 

  η′=b B aΛ  (19) 
where a coupling coefficient may be defined as 

  ( , ) ( , )s s x y x y dxdyκ κβ ϕ ψ= ∫  (20) 

Combining Eq.(15) and Eq.(19), the characteristic matrix equation of a strongly coupled rectangular 
cavity is produced. 

  ( )ω η η′− =B B a 0Λ Λ Λ  (21) 
or  

=Ma 0  (22) 
Now that the characteristic equation is obtained in Eq.(22), the next stage is to search eigenvalues 
such that the determinant M  is zero.  Once eigenvalues are searched, the eigenvectors may also be 
obtained.   
 

2.2 Clusterization for deriving the eigenpairs 
 
Equation (22) may further be written in detail as 

111 12 1

21 22 2 2

1 2

m

m

n n nm m

am m m
m m m a

m m m a

    
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 (23) 

where 

( )
2

2 2
( ) ( )a

s z z s
s

m L L
h

κ κ κ κ
ρ

η η β
ρ

ω
ω ω

 
 ′= −
 − 

 (24) 

To solve an eigenvalue problem in Eq.(22), the matrix M must be square, hence n = m.  The procedure 
to seek the eigenpairs is straightforward.  First, find a frequency that satisfies the determinant of M 
being zero.  With the eigenvalue, the eigenvector may then follows.   
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  In general, the dimension of M tends to be large due to a distributed parameter system dealt with, 
hence it is worth simplifying the structure of the eigenvalue problem of a strongly coupled cavity.   
Note that every term sm κ in Eq.(24) contains the coupling coefficient sκβ , hence the property of the 
matrix M is dominated by the coupling coefficient matrix B. The coupling coefficient sκβ  indicates 
the coupling magnitude between the sth vibration mode and the κth acoustic mode.  To further sim-
plify the eigenvalue problem, we are now going to introduce a cluster coupling method.   
Assume that all the vibration modes are classified into cluster A , B , C  and D  while the acoustic 

cut-on modes are clustered into a , b , c  and d .  Due to the coupling characteristics, the cluster A  
couples only with a , and B for b , C  for c  and D  for d ; e.g. odd/odd structural mode couples only 
with even/even acoustic mode.  Define that 

B DA Cn n n n n= + + +  (25) 

a cb dm m m m m= + + +  (26) 
where for instance An  in the above denotes the number of structural modes belonging to the cluster 
A.  Then, due to the properties of a cluster filtering, the matrix M in eq.(22) may be partitioned into 
 

A A

B B

C C

D D

  
  
   =
  
    
  

M 0 0 0 a
0 M 0 0 a

0
0 0 M 0 a
0 0 0 M a

 (27) 

 where 
aA

A
n m×∈M C , B b

B
n m×∈M C , cC

C
n m×∈M C , D d

D
n m×∈M C  

Moreover, Eq.(27) may be reduced to 
aAM a = 0  (28) 

B bM a = 0  (29) 

cCM a = 0  (30) 

D dM a = 0  (31) 
It is clear that, from Eq.(28) through Eq. (31), a large dimensioned characteristic equation in (22) is 
partitioned into four clusters, and hence the burden to search for eigenpairs is significantly allayed.      
Moreover, the eigenpairs of a strongly coupled rectangular cavity are independently as well as in-

dividually obtained in each cluster, hence the total eigenpairs may be in a form of merely aggregat-
ing the eigenpairs of each cluster.            
It is also clear that in order for an eigenvalue problem to hold, matrices AM , BM , CM  and DM  

need to be square, hence aAn m= , B bn m= , C cn m= , D dn m= .  Recall that the condition, n = m, 
was needed to solve the eigenpairs problem, however, it turns out that it is the necessary condition, 
and not sufficient one.  In other words, An , Bn , Cn  and Dn  need not to be equal.  In the case where 

aAn m≠ , for instance, the number of structural mode or acoustic mode should be adjusted such that 

AM  being square.  

3. Numerical analysis 
Consider a rectangular cavity comprising flexible panel placed on top and five acoustically rigid 

walls with the dimension of ( 0.18 , 0.38 , 0.866 , 0.8x y zL m L m L m h mm= = = = ).  In this case, clus-

ters A , B , C , D  correspond to the cluster of (odd/odd structural modes and even/even acoustic 
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modes), (odd/even structural modes and even/odd acoustic modes), (even/odd structural modes and 
odd/even acoustic modes) and (even/even structural modes and odd/odd acoustic modes), respec-
tively.  First, we need to obtain eigenfrequncies of the vibration mode of a panel and cut on mode of 
a cavity.    

Table 1 shows the modal indices of structural mode and acoustic cut-on mode placed in order of 
frequency.  Consider for instance the case where s = κ = 1, which refers to an odd/odd structural mode, 
cluster A, and even/even acoustic cut on mode, hence the coupling coefficient 11β   is non-zero hence  

11ε  is non-zero also.  This fact is reflected in the eigenvalue matrix in Eq.(32)  
 
Table 1:  modal indices of structural modes and acoustic cut on modes in order of the frequency where s 
refers to structural mode and κ to acoustic cut on mode 

indices 1 2 3 4 5 6 7 8 9 10 
s 11 12 13 21 14 22 23 15 24 16 
κ 00 01 02 10 11 12 03 13 04 20 

 
 

00
11 13 19 110 1

01
22 27 2

02
31 33 39 310 3

44 46

52 57

65 68

74 76

81 83 89 810

95 98

10 2 10 7

00 01 02 10 11 12 03 13 04 20

11
12
15
21
14
22
23
15
24
16

m m m m a
m m a

m m m m a
m m a

m m
m m

m m
m m m m

m m
m m

  
  
  
  
  
  
  
  
  
  
  
  
  
      

10
4
11
5
12
6
03
7
13
8
04
9
20
10

0
0
0
0
0
0
0
0
0
0

a
a
a
a
a
a

   
   
   
   
   
   
   
  =  
   
   
   
   
   
        

 (32) 

 
As a result of properly arranging the order of a raw and a column in the above, we have 
 

00
11 13 17 110 1

02
31 33 37 310 3

04
81 83 87 810 9

20
22 27 10

01
52 57 2

03
10 2 10 7 7

10
44 46 4

12
74 76 6

11
65 68 5

13
95 98 8

m m m m a
m m m m a
m m m m a

m m a
m m a
m m a

m m a
m m a

m m a
m m a

  
  
  
  
  
  
  
   =
  
  
  
  
  
  

    

0  (33) 

 
 
 



ICSV24, London, 23-27 July 2017 
 

 
ICSV24, London, 23-27 July 2017  7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:  Normalized velocity mode shape of a flexible panel and the acoustic mode shapes in the cavity at 
the 1st ~ 4th coupled mode [8, 9] 
 

Illustrated in Fig.2 are the normalized velocity mode shapes of a flexible panel of the coupled 
rectangular cavity [8, 9].  Observe that the structural modal behaviours from the 1st through 3rd mode 
are dominated by the in vacuo mode shape; (1,1), (1,2) and (1,3) mode, respectively.  As for the 4th 
mode, however, the original in vacuo structural (2,1) mode is replaced by the deformed (1,3) mode 
because of the coupling effect.  Figure 2 also shows the corresponding acoustic mode shapes along 
the z direction depicted using the expression: in Eq.(2) in the vicinity of / 2xx L=  and / 2yy L= .  
Unlike the acoustic mode shapes observed in a rigid wall, the mode shapes in the z direction appear 
different.  Regarding the first mode at 77 Hz in Fig.2(a), although the rigid wall mode shape is de-
picted by two parallel straight lines along the z axis, the acoustic mode shape after coupling shrinks 
as z increases, leading to that of an open ended cavity at zz L=  as an extreme case.  Acoustic mode 
shapes in Figs.2(c) and (d) are similar to each other, albeit the 4th mode is considerably affected by 
the coupling effect.  Note that among the four in Fig.2, the 2nd acoustic mode shape appears different 
from the ordinary mode shapes.  Such an intriguing mode shape, characteristic of a strongly coupling 
effect between the vibrational and acoustic fields, emerges when the eigenvalue after coupling be-
comes smaller than the cut-on frequency. 
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4. Conclusions 
The derivation of the eigenpairs of a strongly coupled rectangular cavity comprising a flexible panel 

placed on top and acoustically rigid five walls was presented, fundamental properties of the eigenpairs 
being discussed.  It was shown that, as a result of coupling between a structural field and acoustic 
field in the cavity, two kinds of acoustic modes are found to appear; standing wave mode and eva-
nescent mode. The former is generated by sound reflections in the cavity, whereas the latter by cou-
pling effect.  It is likely that the dimensions of a characteristic matrix of a coupled cavity increase 
because of a distributed parameter system being dealt with.  This paper then presented a clusterization 
method in order to reduce the computation burden on deriving the eigenpairs of a strongly coupled 
cavity.  For this purpose, it was shown that the characteristic matrix of a cavity is dominated by a 
coupling coefficient matrix.  Inasmuch as coupling is strictly selective, the coupling matrix is found 
to be expressed in a form consisting of four independent cluster matrices.  The eigenpairs of the 
coupled cavity may then be obtained by aggregating eigenpairs of each cluster.  Finally, a numerical 
example was demonstrated, verifying the validity of the proposed clusterization approach. 
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