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Bearings are the most critical component used in all kind of rotating machines. Due to the long 

continuous run, the fatigue stresses are generated which result, the defects developing over the 

surfaces of the bearing. For smoothly running the operation, it is important to diagnose these 

defects before the severe damages occur. This study is based on the diagnosis of rolling element 

bearing surface defects with the help of new machine learning algorithms like extreme learning 

machine, rotation forest, random forest, and random subspace. An experiment has been conducted 

to obtain the vibration signals for the analysis of various surface defects such as Inner race defect, 

outer race defect, and ball defect. For further processing of these signals ten time-domain features 

are extracted from the experimental data. Results show that Extreme learning machine is more 

efficient than the other discussed ensemble techniques for the classification of rolling element 

bearing defects.  

Keywords: Bearing defects, Feature extraction, Extreme learning machine, Ensemble tech- 

niques, Vibration signal analysis 

 

1. Introduction 

Rolling element bearing is one of the very essential and critical mechanical components used in 

almost all kind of rotating machines from large industrial system to the small handheld devices. De-

fects in these bearings will lead to the sudden breakdown of the system. It is important to identify 

these defects in advance. Defects are mainly classified into two categories the first is localized defects 

i.e. spall, pits, dents etc. and second is distributed defects which is spread over the surface of bearing 

example of distributed defects are waviness on inner race, waviness on outer race and off-sized rolling 

element. Condition monitoring techniques will help to diagnose these defects. There are several con-

dition monitoring techniques such as vibration analysis, acoustic emission, stator current analysis, oil 

lubrication analysis, etc. out of these vibration analysis is most widely used and accurate prediction 

method used for diagnosis of the rolling element bearing defects.  

For effective analysis of the vibration signals several studies have been carried out by using signal 

processing and machine learning techniques. A process of fault diagnosis of rolling element bearing 

by using intrinsic mode decomposition (IMF) envelope spectrum and support vector machine (SVM) 

proposed by Yang et al.[1]. In their work, the authors have considered the defect on inner and outer 

race of the bearing and collected the vibration signals; features have been extracted by using IMF 

envelope analysis and these features with known output used as test and training set for SVM. Lei et 

al. [2] have developed a new artificial intelligent methodology i.e. adaptive neuron-fuzzy inference 

system, improve distance evaluation and EMD for the bearing defect diagnosis.  
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Recently several authors have employed the artificial intelligent techniques such as artificial neural 

(ANN), SVM, EMD, etc. for the fault diagnosis of the rolling element bearing combined with wavelet 

and feature selection techniques [3-10]. Prabhakar et al. [3] used discrete wavelet transform to detect 

races defects of a ball bearing. In their work, the authors collected the vibration response of rolling 

element bearing having single and multiple point defects on the inner and outer race of the bearing. 

Paya et al. [4] used ANN for fault diagnosis of the ball bearing. The authors have used wavelet trans-

form as a pre-processor. Purushotham et al. [5] proposed an integrated wavelet analysis and hidden 

Markov model (HMM) base model to identify and classify the multiple faults on the ball bearing and 

achieve 99% classification efficiency. Vyas and Satishkumar [6] proposed neural network based tech-

nique for fault identification of rotating machinery, in their work multilayer network and back prop-

agation learning algorithm have been used and authors observed overall success rate is up to 90%.  

Kankar et al. [7,8]  used machine learning techniques such as SVM, learning vector quantization 

(LVQ) and ANN for fault diagnosis of the rolling element bearing. The authors observed that the 

performance of SVM was better than the ANN and LVQ. Most recently, Kavathekar et al. [9] and 

Sharma et al. [10] presented ensemble techniques i.e. rotation forest and random forest etc. and ob-

served that rotational forest is more efficient than other methods.  

In this paper, the machine learning techniques such as extreme learning machining (ELM), and 

decision tree based ensemble technique such as rotational forest, random forest (RF), and random 

subspace (RS) have been used for the classification of bearing defects. An experiment was conducted 

to extract the vibration response of healthy as well as defective bearing. Ten time domain features 

have been extracted from the vibration response of each case. These extracted features are used for 

training and testing set with known output of ELM and ensemble techniques used for the classifica-

tion of bearing defects. 

2. Machine learning techniques 

Machine learning techniques are an approach to create the program from the data.  If the data have 

both input value and output value, it is known a supervised learning. In other case, when only input 

parameters are known with the unknown output and the learning job is to gain some understanding 

of the method that produced the data, this kind of learning approach are said to be unsupervised. In 

this present work, the four machine learning techniques have used, namely, ELM, rotation forest, RF, 

and RS for the classification of rolling element bearings defect. 

2.1 Extreme learning machine  

Extreme learning machine is used to overcome the challenging problem faced by the back propa-

gation (BP) learning algorithm. 

ELM is mainly developed for the single layer feed-forward neural network (SFNN) and then ex-

tended to the general SFNN where the neuron need not to be neuron alike [11-13]. In ELM, the hidden 

layer needs not to be tuned. The ELM output function for the generalized SFNNs is written as: 


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where, 𝛽 = [𝛽1, ………… . . , 𝛽𝑁]𝑇 represent the output weight matrix between the hidden layers of 𝐿 

nodes and output nodes. ℎ(𝑥) = [ℎ1(𝑥),………… . , ℎ𝐿(𝑥)] is the output matrix of the hidden layer in 

respect of the input 𝑥. Generally, this is a process to map the data from 𝑑  dimensional input space to 

hidden layer feature space of 𝐿 dimensional (ELM features space) 𝐻, h(x) is actually a feature map-

ping. for the real application the value of ℎ𝑖(𝑥) can be: 
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where, 𝐺(𝑎𝑖, 𝑏𝑖 , 𝑥) is a nonlinear piecewise continuous function which satisfy the ELM universal ap-

proximation statement [12].  
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From the learning perspective, unlike classic learning algorithm, ELM main focus is to achieve 

smallest training error as well as smallest weight output norms [13]. 
21 ||||||:||

  qp THCMinimize   (3) 

where, 𝜎1 > 0, 𝜎2 > 0 and 𝑝, 𝑞 = 0 ,
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and training data matrix 𝑇 can be written as: 
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Some basic learning principles of ELM are as: 

Principle 1: The hidden neurons of SFNN are randomly generated and independent of training 

samples as well as its learning environments. 

Principle 2: In view of generalization performance and system stability, the output weight norm 

of generalized SFNN need to be small with some optimization constrain. 

Principle 3: From the optimization perspective the SFNN output node should be unbiased (or set 

bias zero) 

So as to satisfy the second learning principle, the minimal norm least square method have been 

used for basic execution of ELM (when 𝐶 = ∞) in place of standard optimization techniques: 

TH †  (6) 

where, 𝐻† = 𝑀𝑜𝑜𝑟𝑒 − 𝑝𝑒𝑛𝑟𝑜𝑠𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑒𝑑 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝐻 , different methods have 

been used to obtained the value of 𝐻† i.e. singular value decomposition (SVD), orthogonal projection 

method and projection method. The output vector β can be estimated by other iterative methods. 

2.2 Rotation forest 

Rotation forest is a new ensemble technique which is derived to overcome the issue with classifiers 

i.e. decision trees, random forest, random subspace, boosting, Adaboost etc., firstly introduce by 

Rodríguez et al. [14]. The primary objective of the rotation forest ensemble is to construct accurate 

and diverse classifiers. Steps involve in rotation forest ensemble are as follow: 

Let 𝐴 = [𝑎1, …… . 𝑎𝑛]𝑇 is represent a 𝑛 feature data set, which having 𝑛 features, and 𝐴 represent 

data point containing training objects in the form of 𝑁 × 𝑛 data matrix. Let 𝐵 is the vector with class 

labels, 𝐵 = [𝑏1 …… . 𝑏𝑛]. Where, 𝑏𝑗 can take value from the class labels 𝛽 = {𝛽1 …… . . 𝛽𝑐}. Taking, 

𝑃1 …… . . 𝑃𝐿 is 𝐿 base classifiers in the ensemble technique, the value of 𝐿 must be decided in advance. 

To build the classifier training set. Following steps have been carried out: 

Step-1 Split the feature vector 𝑆 into 𝐾 feature subset. The feature subset may be disjoint or inter-

secting. Disjoint feature subset have been selected to increase the diversity of the classifier. For the 

simplicity, assume that 𝐾 is a factor of 𝑛, so, each feature subset having 𝑄 = 𝑛/𝑘 features. 

Step-2 𝑆𝑖,𝑗  is the 𝑗𝑡ℎ subset of feature for the training classifier 𝑃𝑖, for each subset a non-empty 

subset of classes are randomly selected and later draw a bootstrap sample size which is 75% of the 

data count. 

Step-3 Apply PCA on 𝑄 feature set of 𝑆𝑖,𝑗 and selected subset of 𝐴. Save the principal component 

coefficients, 𝑚𝑖,𝑗
(1)

, ………𝑚
𝑖,𝑗

(𝑄𝑗)
 each of size 𝑄 × 1. Note that there is a chance that some of the Eigen 

values are zero. So that, the number of vectors obtaining after applying the PCA, may not have 𝑄 

vectors i.e. 𝑄𝑗 < 𝑄. The PCA have only applied on each feature subset instead of whole data set to 

avoid the alike feature coefficient if the same feature set have been selected for distinct classifiers. 
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Step-4 Finally arrange the principal component coefficient in the form of distributed “rotation 

matrix” 𝐹𝑖. 

𝐹𝑖 =

[
 
 
 
 𝑚𝑖,𝑗

(1)
, ……… ,𝑚𝑖,𝑗

(𝑄𝑖) …… [0]

⋮ ⋱
⋮
⋮

⋮
[0]

… 𝑚𝑖,𝑗
(1)

, ……… ,𝑚
𝑖,𝑗

(𝑄𝑗)

]
 
 
 
 

(𝑛×∑ 𝑄𝑗)𝑗

 (7) 

The dimensionality of the rotation matrix is 𝑛 × ∑ 𝑄𝑗𝑗 . The training data set for the classifier 𝑃𝑖 is 

computed by rearranging the column of the rotation matrix, so that they are corresponding to the 

original feature set and the rearrange rotation matrix is denoted by 𝐹𝑖
𝑎 of size 𝑁 × 𝑛. The training set 

for the classifier 𝐷𝑖 is 𝑋𝑅𝑖
𝑚 

2.3 Random forest  

Random forest is an efficient and very popular ensemble method, based on the idea of model 

aggregation, for both regression and classification problems, it is firstly introduce by Breiman [15]. 

Let the learning set 𝐿 = {(𝑋1, 𝑌1),…… . . , (𝑋𝑛, 𝑌𝑛)}, where  𝑋𝑛 is an input data and 𝑌𝑛 is an output 

predictor for the classification, a classifier 𝑡 is a mapping 𝑡: 𝑅𝑃 → 𝑌, and for the regression, suppose 

that  𝑌 = 𝑆(𝑥) + 𝜀. Where, 𝐸[𝜀|𝑥] = 0 and S is regression function. RF is a model formation ap-

proach providing estimators of either the Bayes classifier, which is the mapping minimizing the clas-

sification error 𝑃(𝑦 ≠ ±(𝑥)), of the regression function. 

The basic RF method is the combination of many decision trees built by using various bootstrap 

samples taking from the 𝐿 learning samples. The following Steps are involve in the RF method: 

1. Build of 𝑛 tree bootstrap sample of the original learning data set 𝐿. 

2. For the each bootstrap sampling, grow a decision tree. When the decision tree is growing, at the 

each node, 𝑛 samples are randomly selected from the 𝑁 samples. 

3. Basically, 𝑛 << 𝑁. It is recommending that start with 𝑛 = √𝑁 or [𝑙𝑜𝑔2(𝑁) + 1] and then repeatedly 

increasing and decreasing the values of 𝑛 until the minimum error of the out bag data (OOB) are 

obtained. At each node, only one variable which give the best split has used out of the n samples. 

2.4 Random subspace  

Random subspace is an ensemble technique, similar to the random forest, used for the classifica-

tion and regression, firstly introduce by Ho [16]. In the RS method we modify the training data, but 

the modification is only made in feature space. Let us assume training data point  𝑋𝑖(𝑖 = 1,… . . 𝑛) 

within the training data set 𝑋 = (𝑋1, 𝑋2, … . . 𝑋𝑛)  having 𝑛 -dimensional vector 𝑋𝑖 =
(𝑥𝑖1, 𝑥𝑖2, ……𝑥𝑖𝑛). In the RS method feature subset which is containing 𝑟 features (𝑟 < 𝑛) are ran-

domly selected from the data set 𝑋. Later, the n dimension feature subset is divided into 𝑟 dimension 

random subspace. Therefore, the new modified training set 𝑋𝑏 = (𝑋1
𝑏 , 𝑋2

𝑏 , … . . 𝑋𝑛
𝑏) having r-dimen-

sional training objects 𝑋𝑖
𝑏 = (𝑋𝑖1

,𝑏 , 𝑋𝑖2
𝑏 , …… . . 𝑋𝑟2

𝑏 ) 𝑖 = 1… . . 𝑛, where 𝑟 components 𝑋𝑖.𝑗
𝑏  𝑗 = 1, … . 𝑟 

are randomly selected from 𝑚 components 𝑋𝑖.𝑗 𝑗 = 1,… .𝑚 of the training sample 𝑋𝑖. Then the RS 

classifier have been built and combined by simple majority voting. The organization of the random 

subspace is as follow: 

1. Repeat for 𝑏 = 1,………… .𝐵; 
(a)   From original 𝑚-dimensional  feature space 𝑋, random subspace of r dimension selected 

(b) Build a classifier 𝐶𝑏(𝑥) in the 𝑋𝑏 (with the decision boundary 𝐶𝑏(𝑥) = 0) 

2. Combined the classifier 𝐶𝑏(𝑥), 𝑏 = 1,… . . 𝐵 by simple majority voting to a final decision rule. 





by

x  (x))(C
}1,1{

maxarg
)( ybsgn

 
where,  𝛿𝑖,𝑗  is Kronecker symbol and 𝑦 ∈ {−1,1} class label of the classifier. 

(8) 
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3. Experimental Setup and Features Extraction 

To reduce the plant downtime and full utilization of the machine production capacity, it is neces-

sary to predict the degradation of the machine component (Bearing in present study) before they cross 

the failure threshold. An experimental setup constructed to record the vibration response of the 

healthy and defective bearing. An artificial defect produced on the inner race, outer race and rolling 

element with the help of the electric discharge machining (EDM) as shown in the Fig.1. The experi-

mental setup have been consist of a 3HP induction motor whose maximum rotating speed is 1980 

rpm and the speed is controlled by variable frequency drive. The one end of shaft is connected with 

motor with the help of flexible coupling and another end supported by test bearing. The constant load 

of 1764 N has applied to the test bearing. The schematic diagram of the experimental setup is shown 

in Fig.2.  

Vibration responses of the each bearing have been recorded with the help of uniaxial accelerometer 

whose sensitivity is 100 𝑚𝑣/𝑔. The data have been recorded by varying the rotating speed from 500 

to 1500 rpm with an interval of 100 rpm. For the fast data acquisition, and record vibration data 

DEWESOFT data acquisition system (DAQ). Table 1 represents the detailed dimension of the bearing 

use to record the vibration signal.  

 

 
Figure 1 Bearing defects (a) Inner race defect (b) Outer race defect (c) Ball defect 

 

Figure 2 schematic of experimental setup of rotor bearing system 
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Table 1 Detail specification of the bearing 

Parameters Values 

Bearing number NBC 6307  

Inner Race Diameter (𝐷𝑖) 35mm 

Outer Race Diameter (𝐷0) 80mm 

Ball diameter (𝑑𝑏) 11.25mm 

Width (𝐵) 21mm 

Number of balls (𝑁𝑏) 8 

Contact angle (𝜑) 0o 

Radial internal clearance (𝛾) 20µm 

4. Results and Discussion 

In this section, training and testing data are classified by using ELM, rotation forest, RF, and RS 

with the help of Matlab2014. The results of the test data are displayed in the form of the two-dimen-

sional confusion matrix. The confusion matrix having a column and a row for each class and each 

element of the matrix is shown the number of test example for which predicted class is the column, 

and actual class is the row. 

Total 264 instances and ten features are used in this study. These features or attribute are used as 

input to the machine learning technique for classification of rolling element bearing defects. The 

features included ten statistical time domain features such as kurtosis, skewness, RMS, standard de-

viation, variance, peak to peak, maximum value, minimum value, crest factor and form factor [17].  

The testing results of ELM, rotation forest, RF and RS using 10-fold cross validation and test set 

are shown in Table 2-5 respectively. Total 264 number of cases are obtained out of these 66 instances 

are considered as each healthy bearing (HB). Bearing with inner race defect (IRD), bearing with outer 

race defect (ORD), and ball defect (BD). 

Table 2  Confusion matrix for ELM 

Using Test Set (90 instances) 10 Fold cross validation (264 instances) 
HBD IRD ORD BD Classified as HB IRD ORD BD Classified as 

18 0 0 0 HB 66 0 0 0 HB 
0 20 0 0 IRD 0 65 1 0 IRD 
2 0 24 0 ORD 0 2 64 0 ORD 
0 5 0 21 BD 0 0 9 57 BD 

Table 3 Confusion matrix for rotation forest 

Using Test Set (90 instances) 10 Fold cross validation (264 instances) 

HB IRD ORD BD Classified as HB IRD ORD BD Classified as 

18 0 0 0 HB 56 0 1 9 HB 

0 20 0 0 IRD 0 66 0 0 IRD 

0 0 26 0 ORD 0 1 65 0 ORD 

8 0 0 18 BD 10 0 0 56 BD 
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Table 4 Confusion matrix for RF 

Using Test Set (90 instances) 10 Fold cross validation (264 instances) 

HB IRD ORD BD Classified as HB IRD ORD BD Classified as 

17 0 0 1 HB 56 0 0 10 HB 

0 20 0 0 IRD 0 66 0 0 IRD 

0 0 26 0 ORD 0 0 66 0 ORD 

8 0 0 18 BD 11 0 0 55 BD 

Table 5 Confusion matrix for RS 

Using Test Set (90 instances) 10 Fold cross validation (264 instances) 

HB IRD ORD BD Classified as HB IRD ORD BD Classified as 

17 0 0 1 HB 54 2 0 10 HB 

0 20 0 0 IRD 0 66 0 0 IRD 

0 0 26 0 ORD 0 0 66 0 ORD 

8 0 0 18 BD 19 0 0 47 BD 

 

Table 6 shows the comparison of training efficiency or correctly classify instances (CC); incor-

rectly classify instances (IC), root mean square error (RMSE), and time of training in second. The 

ELM with test set gives 94.12% classification efficiency and time for training also less than the other 

ensemble techniques used in this study. Second best classification accuracy and training time have 

been achieved by rotation forest, which is 91.11% and 0.17s.  

 
Table 6 Comparison of performance measure of ELM, rotation forest, RF and RS 

Parameters Test set (%) Ten-fold (%) RMSE Time 

(s) 
CC IC CC IC Test 

set 

10-

fold 

ELM 94.12 5.88 93.22 9.78 0.1475 0.1375 0.015 

Rotation 

Forest 

91.11 8.89 92.04 7.95 0.1675 0.1669 0.17 

RF 90 10 92.04 7.95 0.1778 0.1743 0.12 

RS 90 10 88.25 11.74 0.1943 0.1946 0.03 

5. Conclusions 

In this study, extreme learning machine and ensemble techniques such as rotation forest, random 

forest and random subspace have proposed for the classification of rolling element bearing defects. 

An experiment have been conducted to acquire the vibration response of the healthy bearing, bearing 

with inner race defect, bearing with outer race defect and ball defect. Ten statistical features are ex-

tracted from the vibration signal which is used as input to machine learning techniques. Following 

conclusions are made base on the study: 

(a) Extreme learning machine provide good learning efficiency in comparison to Rotational forest, 

random forest, and random subspace. 

(b) Training time of ELM is smaller than the other used learning techniques. 

(c) The used techniques also provide good results when the number of instances is small. 
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