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1 INTRODUCTION

We consider the task of object classification in synthetic aperture sonar (SAS) images. Classification of
objects in SAS images based on shape and material properties is a vital task in underwater automatic
target recognition (ATR) and hence in applications such as mine counter measure systems (MCM).

Deep learning has been a highly successful technique for classification of optical images4,8. Subse-
quently, the technique has been adopted in many domains including object classification in SAS im-
ages12,11,5. Initial success of deep learning based image classification was achieved with Convolutional
Neural Networks (CNNs)4,8, and it has been the preferred technique in the field for several years. How-
ever, in the recent years a neural network architecture known as Transformers emerged as a better
performing approach to image classification. Transformers were proposed initially for sequence process-
ing tasks such as machine translation10, but later adapted to image classification in the form of so called
Vision Transformers (ViT)2.

ViTs are generally superior to CNNs when the training dataset is large enough and sufficient computa-
tional resources (memory and FLOPs) can be allocated. The superiority can be observed in terms of
classification accuracy, as well as robustness to noisy data and adversarial attacks6. However, ViTs have
less inductive bias and hence more data and/or stronger regularization may be a precondition for good
performance.

In this work we apply ViTs to the classification task mentioned above. The main goal of the work is to
perform an initial comparative investigation of the ViTs against the CNNs in the context of SAS images,
especially with a relatively small amount of training data.

The organization of the paper is as follows: Section 2 describes the background techniques relevant for
this work. Section 3 gives a description of the task including the dataset and training/evaluation proce-
dures. Details of the experiments and results are presented in Section 4. Finally in Section 5 conclusions
are drawn.
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2 BACKGROUND

2.1 Convolutional Neural Networks

Deep Learning has been an immensely successful approach in many tasks related to artificial intelligence
including image classification. CNNs has been the prominent model that has contributed to this success.
There are a number of well known CNN architectures that are pre-trained with optical images and usually
available in the public domain. One such architecture is Inception-Resnet-v28 and it is used in our object
classification experiments. The reason for this choice is that it was among the best in optical image
classification while keeping the number of parameters and computational cost at a reasonable level.

We also apply transfer learning, meaning that the pre-trained neural network on optical images of the
ImageNet data set7 is trained again on our own SAS image data.

2.2 Vision Transformers

As is the case of regular transformers, ViTs are based on the self-attention mechanism10. Consider
an input sequence of N number of D-dimensional vectors arranged in a matrix z ∈ RN×D. In order to
perform self attention operation on this sequence, we need to split/transform the sequence into three
quantities q,k,v called the triplet of query, key and value. This is done by multiplying the input with a
trainable matrix U as follows:

[q,k,v] = zU, where U ∈ RD×3Dh .

As can be deduced from the above equation, each quantity q,k and v is a sequence of N vectors of
dimensions Dh arranged as a matrix of dimensions N ×Dh. Next step of the self-attention operation is
calculation of the attention weights

A = softmax
(

qkT

√
Dh

)
.

It is clear that A ∈ RN×N . Finally, the self-attention (SA) is calculated by multiplying the value sequence
by the attention weights:

SA(z) = Av.

Usually, several self-attention operations are performed in parallel, results are concatenated and projected
back to a D-dimensional space. This process is known as multi-head attention (MSA) and can be defined
by the following formula:

MSA(z) = [SA1(z);SA2(z); · · · ;SAk(z)]Um, where Um ∈ RkDh×D

With the multi-head attention operation on a sequence of vectors defined as above, Transformer Encoder
can be constructed as shown on the right hand side of Figure 1. In this case we also need to employ
other more conventional neural network operations, layer nomalization (Norm) and multi-layer perceptron
(MLP).

Vision Transformer is just a way of using the Transformer Encoder on a serialized image as shown in the
left hand side of Figure 1. The main idea here is to divide a given input image into a set of patches and
create a sequence of using these patches. Each image patch is flattened to form a vector, so that it fits into

Vol.46, Pt.1 2024



Proceedings of the Institute of Acoustics

Figure 1: Vision Transformer architecture

standard definition of self-attention operations. Proponents of ViT also chose to project the image patch
vectors to a D-dimensional space and add positional information to them to form the final input vector
sequence. The Transformer Encoder is fed with this input sequence and an output vector sequence is
generated. We need only the first vector of the output sequence to calculate the class probabilities using
an MLP head.

In our experiments we used one of the first ever ViT models known as ViT-Base-patch16-2242 as well
as three variants of a model known as DeiT9; DeiT-Base-patch16-224, DeiT-Small-patch16-224 and
DeiT-Tiny-patch16-224. As the model names indicate, all models operate on images of size 224 × 224
using a patch size of 16. The first model ViT-Base-patch16-224 was pre-trained on ImageNet-21k1

(14 million images, 21,843 classes) at resolution 224x224, and fine-tuned on ImageNet-1k7 (1 million
images, 1,000 classes) at resolution 224x224. The DeiT variants were pre-trained on ImageNet-1k
only, but their training is based on distillation . We downloaded pre-trained models from Huggingface
(https://huggingface.co/models).

3 TASK

We describe the image classification task in detail in the following subsections.

3.1 Object classification

In this classification task, we consider classification of sonar image snippets that are extracted around lo-
cations proposed by an object detector. A given sonar image snippet is classified into 4 classes: cylinder,
truncated cone, wedge and clutter. The first three classes represent regular geometric shapes whereas
the last one is a composite class containing spurious detections and other objects that do not belong to
the first three classes.

Figure 2 illustrates the four-class classification task considered in which the input to the classifier is a
sonar image and the output is the probabilities of the classes considered.
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Figure 2: Classification Problem

We implemented a baseline system that realizes the task, by adding a classification head to a base-CNN.
In our implementation, we used the Inception-Resnet-V2 architecture8 as the base-CNN and a single
layer fully connected neural network as the classification head.

Then several Vision Transformers were applied to the same task. More specifically we used ViT-Base-
patch16-2242, deit-tiny-patch16-224, deit-small-patch16-224 and deit-base-patch16-2249 as the classi-
fier.

3.1.1 Data set

The data set used in this work consists of Synthetic Aperture Sonar (SAS) images collected using a
HISAS 1030 sensor3 mounted on a HUGIN autonomous underwater vehicle†. This is a data set where
ground truth labels (i.e. class labels of interesting objects) can easily be obtained because locations
of the objects of regular shapes (cylinder, truncated cone and wedge) are known. The sonar images
were first sent through a blob detector and image snippets of size 299x299 pixels were extracted around
each detection. In this way about 90000 snippets were collected, where a vast majority of the images
belonged to the clutter class. More specifically, there were about 5000 images of cylinder, truncated
cone and wedge objects whereas about 84000 images contained clutter objects. This is clearly a highly
unbalanced data set and therefore class weighting was applied during training to counter this imbalance.
The dataset set was augmented through flipping along the across-track direction and random translations.
About 90% of the total images were used as the training set and the remaining images were set aside as
the test set. This resulted in a final training and test set sizes of 226000 and 32000 images respectively.
Note that we do not use a validation set.

3.1.2 Training and Evaluation

In the case of CNN classifier, the base-CNN was initialized with the original, pre-trained parameter values,
whereas the classification network is initialized with random values. We followed two main training strate-
gies, full fine-tuning and partial fine-tuning. In full fine-tuning, the whole network was trained using the
training set described above, whereas in partial fine-tuning, only the classification head was trained. We
employed the update rule of stochastic gradient descent (SGD) with momentum together with a batch-size
of 25 images. In each experiment, the system was trained for 25 epochs.

The loss function used in training of the baseline system is the categorical cross entropy (CE). That is

†https://www.kongsberg.com/discovery/autonomous-and-uncrewed-solutions/hugin/
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Lbaseline = − 1

N

N∑
i=1

logP (Cti),

where ti is the target class of the ith sample, P (Cj) is the probability of object class j and N is the number
of samples in the training set.

Similar to the case of CNN classifiers, we initialize the ViT classifiers with their pre-trained parameter
values except for the classification heads which are initialized with random values. Finally, full fine-tuning
was performed on all the ViT classifiers, while partial fine-tuning (i.e training only classification head) was
performed on the ViT-Base-patch16-224 architecture.

After each training epoch, the performance of the classifier considered is evaluated on the test set.

We calculated several evaluation metrics on the test set after each training epoch.

• Accuracy: This is the ratio between the number of correctly classified images and the total number
of images in the test set. This is a metric not suitable for a highly imbalanced data set like ours.

• Average Recall: We calculated Recall averaged over all classes, i.e.

Rave =
1

C

C∑
i=1

nii∑C
j=1 nij

,

where nij is the number of class i images classified into class j and C is the number of classes.

• Average Precision: We calculated Precision averaged over all classes. i.e.

Pave =
1

C

C∑
i=1

nii∑C
k=1 nki

,

where nij is the number of class i images classified into class j and C is the number of classes.

• Average F1-score: F1-score combines precision and recall. Our estimation of F1-score averaged
over all classes is based on the formula:

F1ave =
1

C

C∑
i=1

nii∑C
j=1

∑C
k=1(2nii + nij + nki)

,

• Average Area Under the Curve: Unlike the previous two, this metric does not depend on a par-
ticular threshold in classification. Therefore, this is a more suitable metric for our problem. We first
create receiver operating characteristics (ROC) curves, that is the graph of the true positive rate
against the false positive rate, for each of the classes. Then the area under the ROC curve (AUC)
is calculated for each class and the final metric is obtained by averaging AUC values for all classes.

4 EXPERIMENTS AND RESULTS

We conducted several experiments to compare the performance of CNN classifier with the ViT based
classifiers.
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The first experiment deals with partial fine-tuning of the classification networks, i.e. training only the
classification head while keeping the parameters of the base network frozen at the pre-trained values on
the optical images of the ImageNet dataset. Table 1 shows the performance metrics for the CNN-based
and ViT-based architectures, Inception-Resnet-V2 and ViT-Base-patch16-224.

Table 1: Evaluation metrics for partial fine-tuning.

Network fea-vec-dim Accu Prec Rec F1 AUC
Inception-Resnet-V2 1536 95.65 58.67 39.35 44.78 93.12

ViT-Base-patch16-224 768 96.00 64.28 41.32 47.64 93.00

Partial fine-tuning measures the ability of the pre-trained network to generate rich enough features for the
classification of SAS images. Both the CNN and ViT could generate sensible features that lead to decent
accuracy and AUC values. However, recall and F1-score are poor for both of the networks. Evaluation
metric values for the CNN are very similar to those of the ViT, making it hard to decide which one is
better. However, the feature vector dimension of the CNN is almost twice as large as that of the ViT. That
means that ViT features can be considered to be a more compact representation of the same amount of
information.

In the second set of experiments full fine-tuning was performed on both the CNN based and ViT based
classification networks. The results are shown in Table 2.

Table 2: Evaluation metrics for full fine-tuning.

Network #Parm Accuracy
(ImageNet) Accu Prec Rec F1 AUC

Inception-Resnet-V2 55.8M 80.1 98.66 97.41 87.33 91.77 98.09
ViT-Base-patch16-224 86M 88.6 98.36 95.31 85.70 90.03 97.57
DeiT-Tiny-patch16-224 6M 76.6 98.27 95.64 81.99 87.94 97.97

DeiT-Small-patch16-224 22M 82.6 98.34 98.44 80.79 88.18 98.72
DeiT-Base-patch16-224 87M 84.2 98.37 97.36 83.62 89.37 97.75

In this case, we have used three variants of the DeiT model9 in addition to ViT-Base-patch16-224 and
Inception-Resnet-V2. Comparing Tabel 2 with Table 1, it is clear that full fine-tuning leads to better
performance metrics than partial fine-tuning. This may be due to the fact that sonar images and optical
images have considerably different characteristics. Focusing only on the fully fine-tuned models in Table 2,
it is apparent that the accuracy is almost the same across all models. Inception-Resnet-V2 has the best
Recall and F1-score, whereas the DeiT-Small-patch16-224 has the best Precision and AUC values.

If we focus on the metrics AUC and accuracy, there is no considerable difference in performance among
the different models. This happens to be the case, even though there is a considerable variance of the
accuracy of the original models on the optical images from the ImageNet. A possible explanation is that
factors such as model size (number of parameters) can even out the superiority of some original models.
For example, ViT-Base-patch16-224 is far better in accuracy for optical images than Inception-Resnet-
V2, but it has much higher number of parameters than its CNN counterpart. Therefore, in fine-tuning
with a smaller sonar dataset, ViT-Base-patch16-224 cannot maintain its generalization ability as much
as Inception-Resnet-V2 does, and hence losing its superiority. On the other hand, DeiT-Tiny-patch16-
224 has the lowest number of parameters and hence it can achieve a good generalization ability on the
smaller sonar data set, countering its low accuracy on optical images. DeiT-Small-patch16-224 which

Vol.46, Pt.1 2024



Proceedings of the Institute of Acoustics

has 22 million parameters seems to be good balance between the number of parameters and original
accuracy, as it turned out to be the best ViT model.

(a) CNN loss (b) CNN accuracy

(c) ViT loss (d) ViT accuracy

Figure 3: Development of test metrics during training for CNN (Inception-ResNet-v2) and ViT (Vit-
base-patch16-224).

Figure 3 shows the development of the loss and accuracy of the test set after each epoch of training
(fine-tuning). In this case, we have considered only Inception-Resnet-v2 and ViT-Base-patch16-224 rep-
resenting CNNs and ViTs respectively. As can be observed from the figure, development of loss for both
the CNN and ViT appears to be erratic. Ideally the loss should go down as training progresses, but this
behaviour may indicate a mismatch between training set and test set distributions. Development of accu-
racy, however, shows an interesting behaviour. In the case of the CNN, accuracy grows throughout the
training period, whereas in the case of ViT, accuracy reaches a peak and then starts to drop. This indi-
cates that the ViT can overfit the sonar dataset more quickly than the CNN, and this agrees with the fact
that ViT-Base-patch16-224 has a considerably higher number of parameters than Inception-Resnet-v2.

5 CONCLUSION

Vision Transformers considered in this work can successfully be fine-tuned on SAS data for classification
of objects in sonar images. The resulting ViTs can give performance comparable to that of the CNN
architecture considered. Even though big ViTs have superior performance over CNNs on optical images,
it is difficult to achieve the same superiority by fine-tuning them on our dataset which is relatively small
and contains a kind of images different to optical images. A more promising approach would be to select
relatively smaller, yet reasonably well performing ViTs such as ViT-Small-patch16-224 for fine-tuning on
smaller sonar datasets.
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