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Friction-induced noise in elastomeric bearings originates from unstable contact force between 

shaft and rubber bearing facing. A finite element model of elastomeric bearing system is 

established and complex eigenvalue analysis is applied with ABAQUS. A qualitative evaluation 

indicator is introduced to represent friction-induced noise in a certain frequency range. Effects 

of rotational speed of shaft, specific pressure and elasticity of rubber on friction-induced noise 

are analyzed and predicted. 
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1. Introduction 

Elastomeric bearings are extensively used in marine propulsion system. The structure of 

elastomeric bearings is shown in Fig. 1. Lubricated by seawater, elastomeric bearings are pollution-

free, self-sufficient and high-performance [1]. However, friction-induced noise in elastomeric 

bearings is one of the most troublesome concerns in acoustic stealth of underwater vehicles [2-4].  

Friction between contacting interfaces leads to irregular motion, thus resulting unwanted sound, 

which has been widely studied these years. Although frictional mechanical behaviour and contact 

characteristics have been elaborated through numerous experiments and various friction models are 

summarized [5-7], friction-induced noise, so-called squeal or squeak, is still obscure and difficult to 

analyze and predict quantitatively. 

Acoustics of friction and friction-induced vibrations and waves in solids have been 

systematically and extensively expounded by Adnan Akay [8]. At the microcosmic scale, friction 

develops a mechanism that converts the kinetic energy between contact interfaces and leads to 

atomic random motion. Three different friction-induced noise categories—squeal, squeak and creak 

noises are characterized and explained with a phenomenological model [9]. And three main 

physical mechanisms related to each kind of noise are found: the slick-slip, the sprag-slip and the 

mode-coupling instabilities. However, their researches lay particular emphasis on microcosmic 

phenomena and the mechanism of friction-induced noise. 

Heated investigation subjects related to friction-induced noise mainly comprise rail-wheel noise, 

automotive brake squeal and journal bearing noise. Effects of lateral creepage and stick coefficient 

on rail-wheel noise are studied [10] and rail-wheel noise characteristics are summarized [11, 12]. 

Brake squeal is predicted via complex eigenvalue method to facilitate mechanical design of brake 

disc and pad [13-16]. As to journal bearing, self-excited vibration mechanism is investigated to 

account for friction-induced noise in water-lubricated bearing with a two DOF system [2, 3]. In [17, 

18], effects of structure parameters and friction coefficient on friction-induced noise in water-

lubricated bearing are illustrated. However, the tendency and intensity of friction-induced noise 
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under different working conditions in elastomeric bearing are not investigated theoretically yet. 

Besides, characteristics of friction-induced noise in different frequency range are not clear and no 

qualitative indicator is introduced to evaluate it.  

In this paper, friction-induced noise of elastomeric bearing is analyzed and predicted. Firstly, 

complex eigenvalue extraction theory is introduced. Then, an elastomeric bearing system including 

shaft, rubber bearing facing and copper bushing is established via FEM. Procedures to analyze and 

predict friction-induced noise are detailed. Finally, through illustrations of distribution of complex 

eigenvalue in frequency domain and qualitative indicator to represent friction-induced noise, effects 

of rotational speed of shaft, specific pressure and elasticity of rubber on friction-induced noise are 

analyzed and predicted. 

2. General style parameters 

2.1 Complex eigenvalue extraction 

According to [18], the motion equation of elastomeric bearing system model can be written as 

  { ̈}   { ̇}  (    ){ }  { }  (1) 

where M、C、K are system mass matrix, damping matrix and initial stiffness matrix, respectively. 

   is coupling stiffness matrix induced by tangential friction and normal displacement between 

elastomeric bearing and shaft.  

   is unsymmetrical, which is prone to external energy feed into the system to a certain extent, 

leading to system unstability. In order to analyze instability of the system and thus predict friction-

induced noise, complex eigenvalue extraction method is introduced. The basic procedure of the 

method is as follows. 

      (           )  { }              (2) 

where λ is the eigenvalue and Φ is the corresponding eigenvector. 

As eigenvalues and eigenvectors may be complex, it is difficult to solve Eq. (2) directly. Here 

projection subspace method is adopted. Real eigenvalues and eigenvectors are solved first by 

ignoring damping matrix as well as unsymmetrical stiffness matrix. Thus projection subspace is 

acquired and composed of real eigenvectors denoted in a matrix as            . The matrices 

in Eq. (2) are projected onto the subspace 

                                         (3) 

                                         (4) 

       
                                    (5) 

After projection, the characteristic equation can be rewritten as 
      (              

 )   { }             (6) 

Finally, complex eigenvalues and eigenvectors can be obtained by projecting to the subspace 

                                  (7) 

A certain complex eigenvalue can be expressed as 
                                    (8) 

The solution corresponding to this eigenvalue is 
            (               )          (9) 

Thus general solution of Eq. (1) is 

       ∑   𝑖    ( )    𝑖    ( )    𝑖  
 
𝑖=         (10) 

where α and ω are the real part and imaginary part of λ. ω denotes the mode frequency and α is 

relevant to instability of the system. The system becomes unstable when α is positive, thus leading 

to friction-induced noise. 

Therefore, characteristics of friction-induced noise can be represented by eigenvalues [19]. 
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2.2 Finite element model 

2.2.1 Model description 

FE model of the elastomeric bearing system is shown in Fig. 2, which is made up of shaft, rubber 

bearing facing and copper bushing. Rubber bearing facing is completely constrained at its outer 

cylinder surface and copper bushing is tied to rubber bearing facing. The shaft can only rotate and 

other DOFs are constraint. There are 8 grooves in axial direction inside the rubber bearing facing to 

let lubrication water in and out. Geometrical parameters of the elastomeric bearing system are 

shown in Table 1. 

        

Figure 1: Structure of the elastomeric bearings    Figure 2: FE model of elastomeric bearing system 

Table 1: The geometry parameters of the elastomeric bearing system 

Geometry parameters 
(mm) 

Value 

Length of rubber bearing facing 100 

Thickness of copper bushing 5 

External diameter of rubber bearing facing 70 

Internal diameter of rubber bearing facing 50 

Radius of the grooves 3 

Radius of  transition arc 1 

2.2.2 Analysis procedures 

With FE model of the elastomeric bearing system developed, the procedures to apply ABAQUS 

to perform complex eigenvalue extraction are as follows: 

(1) Nonlinear static analysis to define and specific pressure. 

(2) Another nonlinear static analysis to apply rotational speed of shaft. 

(3) Normal modal analysis to extract real eigenvalue and natural mode in order to find the 

projection subspace. 

(4) Complex eigenvalue analysis with the effect of friction coupling considered to obtain 

complex eigenvalue. 

3. Results and discussion 

3.1 Friction model and introduction of impact factor of friction-induced noise  

According to [20], relative velocity-dependent friction model described as exponential 

formulation is adopted to represent sliding contact between rubber bearing facing and shaft. As is 

shown in Fig. 3, the friction coefficient is denoted as 

            (     )              (11) 
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In Eq. (11),    and    are dynamic friction coefficient and static friction coefficient respectively 

and ζ is decaying factor. They are assumed to be:   =0.2,   =0.3 and  =1.    denotes the relative 

velocity of contact interfaces of shaft and the elastomeric bearing facing. 

 

Figure 3: Friction coefficient-relative velocity curve 

Here, rubber is assumed to be linear elastic because nonlinearity is ignored in complex 

eigenvalue analysis [19]. Material parameters of shaft, rubber bearing facing and copper bushing 

shown in Table 2 are available for the following analysis 3.2 and 3.3. Effect of elastic modulus of 

rubber on friction-induced noise will be investigated in 3.4 so the value of elastic modulus of rubber 

bearing facing will be altered there. 

Table 2: The parameters of materials of bearing system 

Components 
Elastic Modulus 

(Pa) 
Poisson Ratio 

Density 
(kg/m

3
) 

Shaft 2.1×10
11

 0.3 7800 

Rubber bearing 

facing 
7.8×10

6
 0.47 1500 

Negative eigenvalues imply system stability, while positive eigenvalues imply system instability 

and lead to friction-induced noise in elastomeric bearing system. In order to predict and analyze 

friction-induced noise quantitatively, contributions of all positive eigenvalues on friction-induced 

noise need to be considered.  Here exponential summation of all positive eigenvalues is calculated 

and a specific index termed impact factor of friction-induced noise is introduced 

         ∑    𝑖 
𝑖=           (12) 

 In Eq. (12),   denotes impact factor of friction-induced noise.   is a constant coefficient, and 

equals        here for the sake of data processing and calculation convenience.   𝑖 is real part of 

the ith positive eigenvalue and   is total number of positive eigenvalues. According to [8], the 

frequency range of friction-induced noise between rubber and metal is 1.5kHz-3.0kHz. Here, this 

frequency range is adopted and is divided equally into three regions 1.5kHz-2.0kHz, 2.0kHz-

2.5kHz and 2.5kHz-3.0kHz.   ,    and    represent impact factor of friction-induced noise in each 

region, respectively. From the formula, it is easily concluded that contributions of all positive 

eigenvalues to friction-induced noise are weighed.  

Rotational speed of shaft and specific pressure in elastomeric bearings are key working condition 

parameters and elastic modulus of rubber is one of the most important material parameters. Effects 

of these three parameters are investigated via FEM and complex eigenvalue data analysis below.  

3.2 Effect of rotational speed of shaft 

This part deals with the effect of rotation speed of shaft on friction-induced noise in the 

elastomeric bearing system. In the simulation, the specific pressure is set to 0.3MPa and three 
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different rotational speed values of shaft applied are 20r/min, 60r/min and 100r/min. Distribution of 

unstable complex eigenvalues in the frequency domain impact factors of friction-induced noise in 

different frequency range are illustrated in Fig. 4 and Tab 3, respectively. 

 

Figure 4: Distribution of unstable complex eigenvalue under different rotational speeds 

Fig. 4 shows that almost all unstable eigenvalues spread in 2.0kHz-2.5kHz and 2.5kHz-3.0kHz 

when rotational speed is 20r/min. When rotational speed rises up to 60r/min, most of unstable 

eigenvalues spread in 2.5 kHz-3.0 kHz. And unstable eigenvalues scatter in 1.5kHz-2.0kHz, 

2.0kHz-2.5kHz and 2.5kHz-3.0kHz three regions when rotational speed is up to 100r/min. The 

majority of unstable eigenvalues appear in 2.5kHz-3.0kHz. 

Table 3: Relationship between factor of friction-induced noise and rotational speed  

Rotational Speed 
(r/min) 

Ψ  
(1.5-2.0kHz) 

Ψ  
(2.0-2.5kHz) 

Ψ  
(2.5-3.0kHz) 

20.00 57.54 957.83 5921.82 

60.00 72.89 455.89 5206.44 

100.00 149.44 1217.45 2875.78 

As is shown in Table 3, impact factor of friction-induced noise rises as rotational speed rises 

from 20r/min to 100r/min. What’s more, the magnitude of this index reflects that friction-induced 

noise appears extensively in 2.5kHz-3.0kHz and the energy of friction-induced noise is shifting 

towards lower frequency when rotational speed rises from 20 r/min to 100 r/min. This trend accords 

with distribution characteristics of unstable eigenvalues under different rotational speeds. 

3.3 Effect of specific pressure 

In order to investigate the effect of specific pressure on friction-induced noise in the elastomeric 

bearing system, rotational speed is kept 20r/min all the time. Three different specific pressure 

values applied in the simulation are 0.3MPa, 0.6MPa and 0.9MPa. Distribution of unstable 

eigenvalues in frequency domain and impact factors of friction-induced noise are shown in Fig. 5 

and Table 4, respectively. 

It is concluded from Fig. 5 that most unstable eigenvalues spread in 2.0kHz-2.5kHz and 2.5kHz-

3.0kHz for different specific pressure values and no unstable eigenvalue appears in 1.5kHz-2.0kHz  

until specific pressure rises to 0.9MPa. 

Table 4 shows that impact factor of friction-induced noise in 1.5kHz-2.0kHz rises as the specific 

pressure rises from 0.3MPa to 0.9MPa. The magnitude implies that friction-induced noise occurs 

mostly in 2.5kHz-3.0kHz. 
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Figure 5: Distribution of unstable complex eigenvalue under different specific pressure values 

Table 4: Relationship between factor of friction-induced noise and specific pressure 

Specific Pressure 
(MPa) 

Ψ  
(1.5-2.0kHz) 

Ψ  
(2.0-2.5kHz) 

Ψ  
(2.5-3.0kHz) 

0.30 57.54 957.83 5921.82 

0.60 107.47 589.47 3601.06 

0.90 796.37 650.74 6554.98 

3.4 Effect of elastic modulus of rubber 

In this part, rotational speed is kept 20r/min and the specific pressure is 0.3MPa. The parameter 

of elastic modulus of rubber in Table 2 is not available and simulations are conducted under three 

different values—4MPa, 6MPa and 8MPa. Other material parameters remain unchanged. 

Distribution of unstable eigenvalues in frequency domain and impact factors of friction-induced 

noise are shown in Fig. 6 and Table 5. 

 

Figure 6: Distribution of unstable complex eigenvalue with different elasticity of rubber values 

As is shown in Fig. 6, unstable eigenvalues scatter in 1.5kHz-2.0kHz, 2.0kHz-2.5kHz and 

2.5kHz-3.0kHz when the value of elastic modulus of rubber is 4MPa. And overwhelming majority 

of unstable eigenvalues spread in 2.0kHz-2.5kHz and 2.5kHz-3.0kHz when it rises to 6MPa and 

8MPa. In addition, number of unstable eigenvalue decreases as the value of elastic modulus of 

rubber rises from 4MPa to 8MPa. 
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Table 5: Relationship between factor of friction-induced noise and elasticity of rubber 

Elasticity of Rubber 
(MPa) 

Ψ  
(1.5-2.0kHz) 

Ψ  
(2.0-2.5kHz) 

Ψ  
(2.5-3.0kHz) 

4.00 2088.01 1912.22 238195.04 

6.00 179.42 2582.54 6990.97 

8.00 101.63 508.36 122181.96 

Table 5 implies impact factor of friction-induced noise in 1.5kHz-2.0kHz decreases as the value 

of elastic modulus of rubber rises from 4MPa to 8MPa. Besides, judging from the magnitude of 

impact factor of friction-induced noise, friction-induced noise mostly occurs in 2.5kHz-3.0kHz. 

Impact factor of friction-induced noise is quite small when the value of elastic modulus of rubber is 

6MPa. 6MPa is almost the optimal value of elastic modulus for rubber for the elastomeric bearing 

system in this paper. It is concluded that rubber with the optimal value of elastic modulus is 

beneficial to attenuation of friction-induced vibration and noise. 

4. Conclusion 

This paper deals with analyzing and predicting friction-induced noise in elastomeric bearing 

system with ABAQUS. Impact factor of friction-induced noise is introduced as a qualitative 

evaluating indicator to predict noise in a certain frequency range. Effects of rotational speed of shaft, 

specific pressure and elasticity of rubber on friction-induced noise are elaborated. The conclusions 

are as follows: 

1. Impact factor of friction-induced noise increases as rotational speed rises. 

2. The energy of friction-induced noise is shifting towards lower frequency when rotational 

speed rises. 

3. Impact factor of friction-induced noise in 1.5kHz-2.0kHz rises as specific pressure rises. 

According to the magnitude of impact factor, friction-induced noise occurs mostly in 2.5kHz-

3.0kHz for different specific pressure values. 

4. 6MPa is almost the optimal value of elastic modulus of rubber for the elastomeric bearing 

system in this paper. For a specific elastomeric bearing, selecting rubber with optimal value of 

elastic modulus as bearing facing material is beneficial to attenuation of friction-induced vibration 

and noise. 
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