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1 . INTRODUCTION

Let us consider a thin empty spherical shell submerged in a
boundless fluid medium. The plane harmonic pressure wave
strikes the shell and is scattered by it. The motion of the
shell is described by the equations of linear elasticity theory,
and that of the liquid is governed by the Helmholtz equation.
It is a two-dimensional steady-state problem. The secondary
field of acoustic pressure, which is scattered by the shell, is
analyzed. Using the method of separation of variables, one can
obtain the exact solution in a series form [1]. It is valid for
arbitrary values of spherical coordinates r, 8. For the sake of
simplicity we shall examine the pressure at a fixed point of
observatizn, situated in the Farfield of the backseattering

, (r/a - 10 , e =1r). He shall consider a typical case in
hydroelasticity, the case of an aluminium shell immersed in
water: - 3 3
aluminium: 1 - 2.79210 kg/m , cl = 6380 m/s. ct - 3100 m/s,

kg/m , c =1470.water: Q - 1.103

The relative thickness of ~the shell h = l-b/a = 1/32. The
calculation is carried out in the range 0 g x - ka 5 400 with
the computation step {x = 10/256. Here, a and F are the outer
and inner radii of the shell, respectively; k = file is the wave
number in the liquid. Qualitatively, the form function is
similar to that presented in [2, Fig.1b]. The plots of the
resonance components of the partial modes are computed. The
single-type resonances are joined into families. In the
considered range, the incident wave generates in the shell the
following peripheral waves: A, 50, A1, 51. At bigger values of
x, the Lamb-type waves of higher orders S and A
( 1 - 2,3,4,...) will be generated. For a more t ick-valle
shell, say at h ~v 1/10, the incident wave will also generate
the A0 wave. I

2. RESULTS

The extrema of the form function curve correspond to the
resonance frequencies of the partial modes. As a rule, the
resonances of peripheral waves with high Q-factor or amplitude
are well-observed on the form function curve. when the
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distinguished on the form function is enhanced. Usually,

frequency increases, the form function curve becomes

observed.

to the cut-off frequency of the A1 wave (7 = 712.11).

successive resonances of this wave can be observed only

(x = - 436.37).

the higher is the Q-factor.

The SD wave. Generally speaking, with n increasing,

21.6.

amplitude quickly grows from Z I 0.0065 to Z I 4.7035.
n > 36, the amplitude decreasegsslowly to Z léé b.1104.

nghs.

 

   

resonance has both of these properties, its chance of being

more

discontinuous (cut). This becomes particularly apparent in the

vicinity of the cut-off frequencies of the Lamb-type waves,

after which the resonances of the newly generated wave can b

The resonances of the bending wave A can be clearly observed in

the strong bending domain. In the example considered, this is

the range 20 < x < 60. The resonances with 33 < n < 61 are the

most clearly observable ones. The influence of the S wave can

be observed in the range of 0 < x < 210 (at 0 < n < 59 , 1.e. up

superposition with the A1 wave resonances. At small n (n < 30),

the latter have a small amplitude, but possess a rather high Q-

factor. One can see the influence decreases as x and n

increase. At x > 385, one can see on the form function curve a

high and broad "splash". It is caused by the resonances of the

51 wave. The cut-off frequency of this wave is x - 423.75.

With n increasing, the first 50 resonance frequencies of this

wave move along the x-axis from the right to the left, and the

succeeding ones, as usual, from the left to the right. 0n the

form function curve, the influence of the resonances of this

wave can be marked up to the cut-off frequency of the 52 wave

We shall use the following notation in the description of the

modal resonances: x is the resonance frequency, 3 n is the

amplitude of the modal resonance component at the resonance

frequency, qn is the width (on the x-axis) of the partial mode

resonance curve at its half-amplitude level. The smaller on is,

resonance amplitude slowly grows.changing from Z =0.9139 to

30 - 1.3312. At 1 < n < 15, with n increasing, he Q-factor

qugckly grows; after this, at 15 < n < 75, it slowly decreases.

The Q-factor, for example, may be characterized with qloo a

The A wave. At 26 < n < 36, with n increasing, the resonance

Q-factor changes in the same way. The proce ure of resonance

scattering theory allows us to separate the resonances only for  600 Proc.I.O.A. Vol 12 Part 1 (1990)
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The A.wave.
grows from
n increasing,

With n increasing,
= 0.0042 to
the Q-factor

the resonance amplitude slowly
'3 = 0.9770; At 1 < n < 20, with

5 almost constant. with further
increase in n, it slowly decreases: 'qGo = 6.4, qso - 9.2,
qloo H 11.6. ' '

The $1 wave. With n increasing. the resonance amplitude slowly
grows from Z = 0.0142 to 8 = 0.8682. The Q-factor is small
at n < 12. kith n increasing, it grows: q40 = 14, qso = 11,
qao I 5.4. .

The resonance frequencies and amplitudes of the partial modes
are given in Tables 1 and 2. We did not round-off here the
resonance positions,'and iVe them with two significant digits
after the decimal point or the- urpoae of actual comparison,
although the computation step is Ex = 10/256.

to find the phase and group velocities of a peripheral
the position of the resonance is known. The resonance
of a peripheral (running) wave coincides *with the

resonance frequency of a partial mode (standing wave). The
resonance takes place when exactly (n+1/2) wavelengths fit the
meridian'circle length. ' -

2n :- (n+1/2)I\11.

It a easy
wave when
frequency

(1)

Here n defines the ordinal number of resonance and determines
its family'(the}§ype of the eripheral waves). From condition
(1) the phase c9 and group c ’ velocitiea'may be found

cvhhn) - °*n1/(“+1/2): Mm) = c<x<n+m-x.1>- '(2)
The dispersion curves of the’ peripheral waves generated in
shells of different thicknesses' can be compared when the
dependence y(z) is calculated. Here y and z are nondimensional
values

y - cPh/ct, : = ktd ' (3)

where c is the velocit of the transverse wave in the linear
elasticity theory, 2 a {1/2) (c/ct)hx, ktl- u/ct and d = (1/2)
(a-b). On the z-y plane the resonances of some other order n
but for different dispersion curves 1, are situated on lines
which pass through the origin. The angle between the line
correspondinglto the n-tH resonance and the z-axis is arctan

2 [(n+1/_2)h] .

The resonance frequencies of partial modes can be found
approximately from the dispersion equations of model problems,

HONDA. Vol 12 Pan 1 (1990)
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namely, describing Lamb-type waves in a plane elastic layer.
For the So and S waves they are found from equation E = 0[4,
eqn 29], and for lhe A1 wave from the equation F - 0[6,eqn 29].
In these equations instead of y,the relation

y, a 2(1-h/Z) z [(n+1/2)h]‘1 W
should be used. (In the model problem, it is assumed that the
S , S and A1 waves are propagating on the middle surface of the
agelll. For the A wave, we should consider the problem
concerning the waves in a plane elastic layer, one side of which
is in contact with the liquid and the other is free, as the
model problem. The resonance frequencies are found from the
equation E(F+V§ + F(E++O = 0 (A, eqn 28] in which, instead of y
(3), the relation

_ y. = 2: [(n+1/2)h3'1 (5)
should be introduced. (In the model problem, it is supposed
that the A wave is propagatin on the surface separating the
elastic body and the liquid.§ In contrast with the model
problems concerning waves in a plane layer, here the dispersion
equations must be solved for every n (n - 1,2,3,...) value. The
resonance frequencies found from the dispersion equations for
model problems are determined as xn1* and presented in Tables 1
and 2. There they are denoted by xn* because i is evident from
the table caption. The comparison of the results shows that at
not very small values of n, the coincidence is rather good.
Qualitatively it can be described as: the long wave (A ~ 4a)
strongly "feels" the curvature of the scatterer; the wave with
wavelength comparable with the typical size of the scatterer
El~a) is not very "sensitive" to the curvatures; the short wave
i~a/2 ) is almost not sensitive to the curvature. For small n
the accuracy of determination of the resonance frequencies can
be improved by using the procedure outlined in [5.6]. In the
case of the A wave, which is generated in the shell by the
incident wave, over a rather narrow x range and at low x values,
the analytic formulae of resonance scattering theory may be used
[3].

The acoustic- spectrogramme can be constructed using the
resonance frequencies of the partial modes. In [7-9] a proposal
is made to use it as an acoustic signature. Although direct
methods of determining the resonance frequencies have been
elaborated [10-15], not all the resonances are apparent on the
form function. Particularly, this is related to resonances with
low Q-factors, which overlap in frequency. As a rule, the
neighbouring resonances are in anti-phase. The amplitude of
superposition of resonances with low Q-factors is smaller, and

802 Proc.l.O.A. Vol 12 Pan 1 (1950)
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sometimes essentially smaller than every summand. The extrema
of this superposition do not coincide with the resonance
frequencies. In such a case the extreme of the form function
curve are also shifted with respect to the resonance-
frequencies. Sometimes, this shift attains (1/2) (xn+1-x . In
the example considered, the S wave has these propert es at
35 < n (830, the A1 wave at 95 < n < 95, and the $1 wave at
1 < n < .

3 . CYLINDRICAL SHELLS

The scattering process is similar to that described above when
the plane acoustic wave strikes a circular cylindrical shell at
normal incidence. In this case the resonance amplitudes of
partial modes are considerably smaller, because in the
cylindrical case the source is a point, not a circle. The
formulae (1)-(5) are valid, but n should be inserted into them
instead of (n+1/2). In the spherical case the extra 1/2 in
(n+1/2) is caused by focussing. Approximate asymptotic formulae
for the positions of the resonance frequencies at small values
of n are given in [6]. The are checked when scattering on a
cylindrical shell with h e l 10 is considered.

When a plane acoustic wave falls on circular cylindrical shell
at oblique incidence, the phase velocity of the peripheral wave
can be found from

cph(xn1) - c(xn1/n)_.( 1 + [(xnlln)sinat 12) -1/2 (e)

which follows from evident equality

(Wnl/cph)2 = [(Hnllc)sin cl ]2 + (n/a)2. (7)

Here at is an angle between the direction of the incident wave
propagation, and the normal to the longitudinal axis of the
shell.

positions of theAt oblique incidence, the estimation of the
and A canresonance frequencies of the peripheral waves so, S

be found rather exactly from the dispersion equat one o the
Lamb-type waves in a plane "dry" layer [16]. These equations
may be obtained from the equations E = 0 and F = 0,
respectively, by changing y for yo, where

yo - < a, [1 + (aznh/a12)11) "'1 (a)
al-(ct/c)sine(,- a2=(1+b/a)'1. (9)

In the case of the A wave, the estimation of the resonance

Pros.l.0.A. Vol 12 Part 1 (1990) 803
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frequencies' positions can be found from the equation
E(F+W) + F(E+W) = O in which yo (9) is inserted with a2 = 1.

The obliqueg incident wave alsogenerates shear peripheral

waves T1 (1 = 0,1,2,...) in a cylindrical shell. The resonance
frequencies of these waves can be found approximately from the
equations ‘

shPL = o, chpt a o (10)

for the symmetric and antisymmetric waves, eripectivelyt In
equations (10) the notation pt = (z/yo) (l-yo ) is used.

The resonance frequencies of the To wave are given by the
formula

2n = aZnh(1-a12)'1/2, (11)

and those of the T wave by the formula

2“ = (Tr/2) ( [1 + [(2/1r)a2nh]2] . (1-a12)'1)1/2. (12)

The comparison of the exact (computed according to the procedure
of resonance scattering theory) and the approximate values of
the resonance frequencies shows the efficiency of the proposed
formulae for the S , A, A1, T and T1 waves [16] in the case of
scattering by an aPuminium she 1 with h = 1/32 immersed in water
at three different angles of incidence: 0°, 5° and 10°.

0n the z-y plane, both for shells with h =1/32 and thicker
shells with h = 1/10, the dispersion curves of the phase
velocities of the peripheral Haves practically coincide for
spherical and cylindrical (in case of normal incidence) shells.

'They do not differ from the corresponding dispersion curves in
the case of a plane layer. This concerns both the domains of
the dispersion curves at small n values (in the vicinity of the
cut-off frequencies) and the points of intersection of the
dispersion curves of the peripheral waves St and Al
( L = 2,3,4).
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TABLE' 1

:6 xn xn*
0.9139 6.25 5.61
0.9947 10.00 9.36
1.0285 13.59 13.11
1.0441 17.23 16.84
1.0524 20.50 20.59
1.0474 24.61 24.33
1.0555 28.28 23.07
1.0606 31.99 31.81
1.0610 35.70 35.54
1.0177 39.41 39.27
1.0454 76.41 76.33
1.0800 112.89 112.39
1.0931 143.33 148.38
1.1086 182.19 182.29
1.1323 213.71 213.85
1.1655 241.91 242.11

“ 'Zn xn ‘n*
31 1.2321 23.87 23.36
32 0.6392 25.20 24.69
33 1.1969 26.48 26.03
34 2.3336 27.81 27.38
35 3.7359 29.14 23.74
36 4.7035 30.47 30.11
37 4.5803 31.80 31.43
35 4.6195 33.09 32.85
39 4.5477 34.33 34.21
40 4.5369 35.66 35.57
41 4.4816 36.95 36.91
42 4.4499 38.20 38.25
43 4.4102 39.45 39.57
44 4.3731 40.70 40.83
45 4.3378 41.95 42.17
46 4.3054 43.16 43.44
47 4.2797 44.41 44.69 1.2103 266.02 266.21
43 4.2437 47.50 - 1.2666 285.74 255.96
49 4.2099 46.99 47.14 100 1.3312 301.91 302.12
50 4.1687 48.32 48.34
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TABLE 2

A1

Zn
0.0042
0.0204
0.0486
0.0730
0.1022
0.1215
0.1369
0.1574
0.1750

10 0.1942
20 0.3606
30 0.5004
40 0.6137
50 0.7047
60 0.7785
70 0.8395
80 0.8913
90 0.9364

100 0.9770

\
D
C
D
N
O
‘
U
I
§
U
N
H

5 xn
212.11
212.27
212.50
212.81
213.20
213.67
214.22
214.80
215.51
216.25
227.34
243.79
263.98
286.64
310.82
335.90
361.29
386.56
411.41

xn*

212.09
212.25
212.48
212.79
213.17
213.63
214.17
214.78
215.46
216.21
227.30
243.72
263.87
286.49
310.68
335.76
361.23
386.64
411.64
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10
15
20
25
30
35
40
45
50
55

'60
65
70
75
80
85
90
95

2.
0.0142
0.0523
0.1011
0.1511
0.2022
0.2542
0.3068
0.3597
0.4126
0.4650
0.5166
0.5667
0.6148
0.6602
0.7026
0.7412
0.7759
0.8065
0.8331
0.8560

S1

xn
423.75
420.70
415.51
410.31
405.51
401.25
397.66
394.73
392.62
391.33
391.02
391.76
393.63
396.80
401.37
407.42
415.00
424.06
434.53
446.25

xn*

423.69
420.68
415.49
410.31
405.53
401.29
397.68
394.78
392.65
391.37
391.04
391.76
393.63
396.78
401.32
407.33
414.86
423.87
434.29
445.95
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