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1. INTRODUCTION

The movements of speakers' faces can convey visual cues to speech which tend to complement the
acoustic cues: for example. acoustic cues to the place of articulation which are easily destroyed by noise
are alien visually robust [1]. The hearing-impaired have long been aware of the potential benefits of
augmenting their restricted acoustic inputs with visual speech signals in order to lip-read. However.
automatic speech recognizers should also be capable of enhanced performance, especially in noisy
conditlons. if their conventional acoustic inputs can be augmented with visual data. This approach is
attractive because it promises-a reasonable level of noise immunity at a potentially low computational
cost. Whilst there are techniques for processing acoustic signals to provide compensation for a noisy
environment. they are commonly computationally expensive or only partially effective [2].

The principal problems In implementing audiovisual speech recognizers are a) managing the large
volumes of data that sequences of images generate and b) integrating visual and acoustic data so that
the best use can be made of both together. One early visual recognition system [3] computed the
differences in pixel intensity between successive monochrome oral images in order to build a time-
varying template that could be used for pattern matching with templates for a set of reference words.
Another prototypical. isolated word. speaker-dependent visual recognition system [4] achieved data
compression by windowing video images so as to retain only the mouth region of speakers. reducing
these oral images to black and white and then contour-coding to capture the boundaries of the dark
areas which represented the oral cavities. These codes were used to construct time-varying templates of
parameters such as the width. height. area and perimeter of the oral cavity areas. which were used for
comparison with corresponding templates from a reference vocabulary of spoken digit words. In this
system. acoustic word recognition was performed independently and in parallel. Audio-visual recognition
was achieved by combining heuristically the word recognition results from the two modalities and it was
therefore difficult to assess accurately the gains arising from the addition of the visual speech
component. which is an early objective of audio-visual speech recognition experiments.

The present paper describes the development of a speech recogniser based upon hidden Markov
models. or HMMs [5], that use composite. audio—visual feature vectors. The visual component of the
HMMs is monochrome oral image data. compressed by means of the method of principal component
analysis. By bringing together these two techniques. this approach integrates both visual and acoustic
data and processes them together throughout. it contrasts with hierarchical approaches in which
categoncal decisions may be taken at a number of different points within independent processes. after
which possibly relevant data are lost. in order to assess the performance of the system. a speaker-
dependent. small-vocabulary task was chosen, namely. the recognition of connected digit triples (for
example, 'six one seven'), using a continuous recognition system with the ten digit words as its effective
vocabulary. Even though this is a linguistically trivial recognition task. it is nonetheless one with a range
of potentially useful applications. A range of levels of simulated noise was superimposed on the acoustic
input to the system in order to investigate the benefits gained by using the visual component of the
speech signal.
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2. AUDIO AND VIDEO DATA COLLECTION AND PROCESSING

2.1. The database

A database was constmcted lrom recordings of a single. native English speaker enunciating utterances

from the NATO ass-1o standard digit triple lists 3A. SB and SC. Each list consisted of 50 triples and

was recorded twice. Simultaneous. synchronised video and audio recordings were made.

2.2, Recording arrangements

The speaker was seated in a sound-prop! booth in a chair with a head-rest to which were attached guide

posts. With this arrangement a) the head movements could be largely eliminated and b) the head could

be brought to a fixed orientation against the guide posts. A videocamera was located approximately one

metre away trom the speakers lace at the same height as the speakers mouth and a Shure SM48

microphone was mounted on a boom at about 0.2 metre from the speaker’s mouth and somewhat below

it. out of line of sight of the camera. Frontal Ilghting was provided by two lestoon lamps arranged on

either side of the camera and as close to it as possible. A TV monitor was placed on a table in front oi

the speaker and just out of line of sight oi the camera so that the speaker could see the iacial images as

they were being recorded. The horizontal limits of the lips in their rest position was marked on the

screen. The speaker was instructed to maintain this head alignment during ‘takes'. Prompting sheets

were also placed on the table where they could be read without requiring head movement The

recordings were monitored by an operator outside the booth and who could talk to the subject over an

intercom ii errors were noted which necessitated re-recording.

2.2.1, Video recordings. The monochrome camera was fitted with a 8mm local length. {1.8 aperture lens

incorporating an automatic his system._ The camera was adjusted so that the speaker‘s face from just

above the nostrils to Just below the chin occupied the whole Irame. The images of the oral area were

digitally captured in 64 x 64 pixels (1 byte ol intensity per pixel) at 25 frames per second, using a

specially developed audio-visual collection unit based on Transpuler technology. At this data rate.

images could be captured and stored on a PC disc in real-time.

2.2.2. Audio recordings. The audio—visual collection unit (see Section 2.2.1 above) was designed and

programmed to nerlonn a 26-channel lilterbank analysis oi the signals from the microphone. which were

sampled at 20 kHz. No pro-emphasis was used in these experiments. The centre frequencies and

bandwidths of the channels were set at values used in the JSRU channel vocoder [61, with extensions to

cover the range 60 Hz to 10kHz. The filterbank outputs. in logarithmic Ionn. were sampled 100 times per

second. These samples represented the acoustic speech data. The lilterbank representation is a

convenient and economical one for prototypical experiments and is unlikely to be significantly worse than

more sophisticated representations tor small-vocabulary. speaker—dependent experiments involving

noise contamination in. A simultaneous DAT recording was also made for archiving and reference

purposes; it was not synchronised with the video recordings and was not therefore used for the

recognition experiments.

2.2.3. Audio and video signal synchronisation. A single crystal clock was used to drive both a video sync.

generator and a sampling clock generator. The videocamera was locked to the video sync. and the

audio-visual collection unit was controlled by the sampling clock generator, In this way. the 25 video

frames per second were synchronised with the 100 filterbank outputs per second in a strict 1:4 ratio. The

video and audio data were multiplexed for transmission lrom the audio-visual collection unit to the PC

and de-multiplexed for separate storage at the audio and video on the PC's disc.
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2.3. Video data processing and FDA encoding

To reduce the video data to manageable propodions, the 64 x 64 pixel facial images were first reduced

to 16 x 16 pixel images hy simple pixel averaging. A iixed window of 6 x 10 pixels was then selected,

completely covering the oral region. The window's position was fixed relative to the full image and the

spatial resolution was chosen to lie near the limit below which experiments [£3] have suggested that
visual speedl cues are lost. Further video compression was achieved by using principal component
analysis, or PCA [101. FCA is a data-driven melhod that requires no a priori' information about the

structure of the data. Although it is only one of a number of possible methods. it has a number at
attractions {11]. Image sequences from 200 oi the recorded digit triples were used were used to buitd a

PCA encoder. The 'mean image' of the set was computed and subtracted from each of the images prior
to PCA. Each resultant image represented a point in 60-dimensional 'pier-intensity' space which F'CA

transformed into a set of orthogonal axes such that each new axis accounted for as much as possible oi
the remaining variance. The training showed that only a small number of axes was needed to account for
the greater pan of the variance; the first axis accounted tor 13.0%; the first three for 32.4% and the first

ten [or 62.1% of the variance. An n—channel PCA encoder used the moroinates in the first it axes
derived from the training process to code on Image. Since the oral images are both highly structured and

dynamicain constrained by the undenying anatomy, images outside the training set can be coded
accurately in this way, as iliustrated in Figure 1. The PCA encodings have a generally consistent
relationship with specific articulatory gestures. The values of the individual FCA coefficients that

represent the enoodiflgs of each image show variations with time over a sequence oi images that are
broedty smooth and compatible with articulatory rates oi change.

2.4. Addition of simulated noise to acoustic data
Simulated wide-hand, stationary noise was added to the acoustic channel in order to investigate the
benefits at adding a visual channel to the recognition system. The use of a filterpank acoustic
representation (see Section 2.2.2) precluded the direct superimposition of digital speech and noise

waveiorrns, Instead. a fillet-hank representation ol simulated noise was added to the mterbank
representation of the speech signal using a ‘max' operation. which. in the log space or the filterbank
representation. is an approximation to addition in linear space. Filterbank representations of the speech
data lrom the training set and noise signals at diftereni levels were used to estimate signal power and
hence to calibrate the noise-contaminated samples in terms of their signal to noise ratio in dB, The
simulated noise was effectively spectrally flat to within 1 (13 across the lull frequency range and could be
added 'on-line' as an optional stage in the recognition process (see Section 3).

 

Figure 1‘: Oral images (6 x to pixels) recorded timing speech Wampum The mp mw Sm: the mgma,

images and the bottom row, the reconstructions from a s—channei' PCA image encoding.
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3. THE RECOGNITION SYSTEM AND THE TRAINING PROCEDURE

A continuous speech recognition system was used to Identify the connected digits within the topics using
sub-word HMMs. These consisted ot thirty 3-state HMMs to model the set of tn'phonos. that is, the single

phonemes in the context oi each of their preceding and following phonemes, that can occur in the test
vocabulary. The HMMs allowed transitions only to successor states or back to the same state. Four
HMMs were also used to model various non-speech events such as siiences. lip smacks and breath
noise. Composite. audiovisual leature vectors were used in the models and were constructed by

concatenating the m fitterbank (audio) inputs with n PCA coder (visual) outputs. Four replications of the
PcA codes for each recorded vldeo trams were used to create composite, audio-visual feature vectors at
too Hz (see Section 2.2.3). Each state of each HMM was identified with a single muttivariate Gaussian
density Tunction of dimension (mm) and a diagonal covariance Matrix. The mean and Standard deviation
for each dimension of each state. as well as the state transition probability matrices. were re-astimeted
from initial values for each model during training. using the Baum-Welch algorithm [5,12], in the
following way. The set of 200 digit triples that was used to build the PCA image encoder (see Section
2.3) was orthographically labelled and the triples were marked with their start and finish times, using a
forced recognition alignment on the audio data and hand correcting where necessary. The various types
of non-speech items were also marked. A pronunciation dictionary was used to define the phone
sequences in the training data and altocate these in equal time slices among the states of a sequence of
phonetically context-insensitive. or monophone. HMMs. The monophono HMMs were usedto compute
initial estimates of the means and standard deviations ofthe parameters at the feature vectors. These

were then used to start the re-estimation procedure tor the appropriate triphone HMMs.

4. RECOGNITION EXPERIMENTS AND RESULTS

Recognition experiments were carried out using 100 ol the recorded digit triples that were not used either
to build the PCA image encoder or for HMM training. with varying levels of added noise. Five conditions
were examined in each experiment. according to the feature vector composition, as follows: a) the 26
filterbenk parameters, or audio signal, only Ca26v0'): o) the same plus1 channel of FCA image encoding
('a26v1'): o) the same plus 3 channels at PCA image encoding €825v3'); a) the same plus 10 Channels of
PCA image encoding ('326v1 0'): and e) 10 channels of FCA image encoding. or visual signal, only
('aflvtD'). The recognition results were scored as a percentage word accuracy, which takes insertion
errors into account as well as substitution and deletion errors. A phone-mediated. dynamic programming
method was used to find the optimal alignment between the recognised and test digits,

Two types of HMM were examined. The first type was computed with state-specific variances, that is, the
means and variances or every parameter in the feature vectors were computedindependently for each
state at each HMM. The second type was computed with so-oalled grand variances or, specifically,
feature-specific variances. Each type of HMM was tested with and without the incorporation ol 3 standard
noisetracking and masking algorithm [13] that compensated tor some of the effects or noise in the
acoustic signal and hence set a more realistic baseline for assessing the contribution oi the visual
component to speech recognition in noise. Separate model reestirrtation was carried out for the SSV
and the GV models in each of the experimental conditions using acoustic speech signals without noise
contamination. For practical reasons. re—estimation was not carried out separately for the noise-tracking
and masking experiments. The visual-oniy condition was of course unaffected by the the addition of
noise-tracking and masking to the recognizers.
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4.1. State-specific variance (SSV) models 1
Experiments A and B used SSV models. respectively without and with noise-tracking and masking.

The results of experiment A are shown in Figure 2a. They showed that for an audio-only signal. low
levels of noise down to a signal-to—noise ratio (SNR) of so d3 did not significantly degrade the
recognition performance. There was a notch at a SNR of 47 dB. This reflected the frequency with which
the recognizer accounted for precisely this level and type of noise and the trailing end of a digit triple. as
the digit ‘two'. At SNRs below 37 dB. recognition performance fell off rapidly. Audio-visual recognition
with only one channel of visual data produced no improvement outside the region of the notch. Three or
ten channels of visual data in the composite speech signal both produced recognition gains in the low
noise region down to a SNR of about 50 dB and again in the higher noise region at SNRs below about 33
dB. The gains were not maintained in the intervening region between 50 end 33 dB. Ten channels of
visual data gave better perionnance than three at all noise levels. However. audio-visual performance at
SNRs below 35 dB was consistently poorer than the 80% word accuracy rate of visual-only recognition.
The visual data was pulled down by the corrupted audio data.

Use of noise-tracking and masking (Experiment 8. shown In Figure 2b) produced the anticipated

improvement in the audio—only recognition performance as well as consistent improvements in audio
visual recognition throughout virtually the Whole range of SNRs. The notch of experiment A was also
eliminated. One channel of visual data produced little improvement in performance. while ten channels
produced the best improvement. Three channels of visual data were only slightly inferior to ten, The
addition or noise-tracking and masking to the audio-visual recognition process produced useful gains at
low and medium noise levels and substantial gains at high noise levels. It had therefore done its Job or
allowing the visual data to influence the recognition process when the acoustic signal was conupted by
noise. However, the combined mode recognition rates still fell below the visual-only recognition
performance. For both the re-estimation and recognition processes. the probability of obtaining a
particular observation vector in a given state of an HMM must be computed. For the uncorrelated
Gaussian distributions of feature values assumed in the current HMMs. this calculation involves both a
variance term and a term for the deviation from the mean value of each feature. When masking Is
invoked at high noise levels. the deviation term tends towards zero for the acoustic features.
Consequently. when there is noise. the recognition process tends to be biased towards the states of
HMMs with small variances. hence pulling down the performance of the audiovisual recognition process
despite the presence of an uncorrupted visual signal.

4.2. Grand variance (GV) models
Experiments C and D used GV models. respectiver without and with noise-tracking and masking. GV
models reduce the problems of bias towards states with small variances described above. by computing
variances which are common across all states of all the models. but are still specific to each feature in

the vedor. The result would bethat variance would play its normal part in the computations unless the
means were masked. In this case. there would beno bias to particular states because the relevant
variances would be equal across all states. Since GV models use fewer parameters than SSV models,
recognition performance for GV models tends to be lower than for the corresponding SSV models.

The results for experiment C. shown in Figure 2c. were broadly similar to those for experiment A. except

for the expected overall reduction in word accuracy rates for the reasons described aboveThe addition
of acoustic noise-compensation in experiment D (Figure 2d) produced the same anticipated gains as
experiment B showed in comparison to experiment A for the SSV models. That is. whilst the recognition

rates at low noise levels were slightly reduced. the noise tolerance at high noise levels was significantly
increased. A single visual data channel shows no improvement over audio alone; three visual channels
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are almost as good as ten and markedly improve performance. In particular, these curves flatten out at
SNRs worse than -10 as, indicating that the recognition system is relying almost entirely on the visual
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Figure 2: Results at the audio-visual speech recognith experiments as acoustic noise is added to the
speech signal. The experiments are descn‘bsd in Section 4 a! the text.
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data when the audio data is destroyed by noise. The 'a26v10' curve however flattens out below the
visual-only performance level rather than trending towards this value. This may be due to Incorrect
synchronisation of the audio and vlsual data during the training phase, Including the use of repllcated
video frames (see Seuion 3) so that the visual component of the optimised audio-vlsual models was not
as accurate as the visual models optimised on visual data only.

5. DISCUSSION

The experimental results demonstrate that the use of non-acoustic data. in the form of visible lip
information, can be Incorporated into composite HMMs and can produce gains in perlorrnance tor a
speech recognition syflem applied to ten word digit vocabulary. Since the audio and visual data is
integrated within the HMMs, there is no need to switch between different forms of recognition at different
acoustic noise levels. The performance gains can be achieved over a large range of acoustic noise
levels and are substantial. They can be expressed in a number of ways. For example, at the 90% word
accuracy level, a recognition system based on SSV models with nolse compensation and employing 3
channels of visual and 26 channels of audio information can tolerate 14 dB more audio noise than an
audio-only system. If GV models are substituted for the SSV models. a gain of 13% in accuracy can be
obtained at a SNR of MB when the 26 channels of acoustic data are augmented by 3 channels of visual
data. The accuracy of the 26 audio plus 3 visual composite GV models using noisetracking and
masking, at in SNR ratio of 10 dB, is 97%. The highest accuracy achieved for the audio-only system at
this noise level Is 85%. Useful applications can be envisaged for audiovisual recognizers with this kind
of vocabulary and performance. The results also indicate that the Ideal audio-visual recognizer would use
ssv models with appropn'ately large numbers of parameters. but in which the effect of the van'ances in
noise-masked features can be removed from the calculations (see Section 4.2). It is possible that this
might in future be achieved by using masking techniques such as that of Gales and Young [14] In order
to achieve high accuracy at both low and high levels at noise.

The use of PCA coding may not provide the best possible visual representation. The lack of performance
improvement when a single channelicf visual data Is added to form a composite audio-visual feature
vector suggests that the first PCA coefficient contributes little in terms of discrimination. This may not be
unreasonable, as it represents only a location along the axis in which the visual data showed the most
variation. PCA has nothlng to reveal about the way that classes are disposed along the dimension. Linear
discriminant analysis [15] may, in the longer term, offer more useful insights, but has not yet been
Investigated. Altematively, the contribution of the various PCA coefficients to discrimination might be
subjectiver explored by generating pairawise scatter plots from these data. A further issue to be explored
is the effect of using images of differing spatial resolution in the recognition process.

The gains of using visual data in automatic audio-visual speech recognition may also be assessed by
comparison with the results of perceptual experiments equivalem to those described In this paper on
human listeners, using the same test data, This general approach is already being used to assess the
performance of computer graphics syntheses of visible facial speech articulations [18].
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