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‘1. INTRODUCTION

The main objective of this study was to invstigate wave propagation in multi-layered highly
dissipative materials which are typically used in road construction. The time domain
approach is favourable in that obtaining resonance or frequency response data is difficult, if
not impossible, due to the requirement of low dissipation at the higher frequencies and
wavenumbers which are necessary to produce the required response. Propagation in layered
media has historically concentrated upon propagation in soils [1 — 4] and for such
considerations the dispersion curves (the relationship between the velocity and wavelength or
wavenumber) for typical configurations have beenobtained [3,5,6]. The effect of dissipation
on these curvs has been investigated.

Various investigators have attempted to use the dispersion curves measured on the surface to
evaluate the elastic moduli and thicknesses of the various layers. Typically thee curves are
primarily obtained for the Rayleigh waves (which have vertical and horizontal displacements
with amplitudes which decay exponentially with depth from the upper surface) which are
dominant in the far field [2,4].

In the near field, where short time histories are typically obtained for impulsive excitation, the
body waves (compressive and shear) are important as they contribute significantly and can
potentially propagate and reflect from layer interfaces. To obtain the time domain solutions
Fourier transform techniques have been applied [4,7] and this has been further extended to
dissipative materials, to consider the high time resolution for small layers and for the
application of angled impulsive forces. The latter aspect is part of an initial study of
specifying a test which essentially can interrogate primarily the upper (top) surface.

2. ANALYTICAL MODELLING OF ELASTIC WAVES IN
LAYERED ELASTIC MEDIA

For simplicity the analytical modelling has been restricted to the two dimensional problem
where motion in an elastic media is restricted to the direction parallel to the surface (x-
direction) and perpendicular to the surface through the depth of the media (z-direction) (see
Figure l). The analysis can be extended to the three dimensional problem using cylindrical
coordinate (no.2) (see Brekhovskikh [8]).
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The equations of motion for the displacements u, w in the x- and z-direction respectively are

p%=(1+ mg—vazu (2.1)

31 as
p 3? = (I. + [1); + uvzw (2.2)

where p = density of the media, Lu = [amé‘s constants,

A = div V (V = lu,w)).
Bu 3w 2 31 32

= a: + E, V :3 + 3 .

To solve for u and w it is convenient to introduce o, the potential for compressional waves,
and w, the potential for shear waves, as follows

u=£-aa-lzl (2.3)

w =g+ g (2.4)

The potentials are then solutions to the following equations with the boundary conditions on
the surfaces of each individual layer.

 

V2 4; =12 % , cf = A :32" = compression wave speed (25)
c1

'l
V2 w =—2 ? , c21=E = shear wave speed (2.6)

‘2

To obtain the dispersion relationship for single, multi-layered and half space problems, it is
normal to assume harmonic solutions for o and w, ire.

o = ¢(z) ei‘“ ' ’0‘) (27)

v = v(:) all“ ' k" (2.8)

Substituting equations (2.7) and (2.8) into (25) and (2.6) one can obtain solutions for 0(2). v(z)
for each layer, itei
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0(2) =€cos az—Esinhuz (2.9)

w(z) =lchosh [i2 - gsinh [32 (2.10)

where u2=k2—klz,lq=w/ci, Bz=k7-lczz.k2=w/cz.

The four constants A, B, C and D appearing in equations (2.9) and (2.10) are determined from
the boundary conditions for the layer. The conditions may be in terms of the displacements u
and w (as related to the potentials in equations (2.3) and 2.4)), or in terms of the surface
strsses oz and 11x.

oz=xv2¢+2u6%) = A§—3+(x+2p)%: (2.11)

3% 32V 32 atz,=u(2m-W+5Z-¥)= ug+fi (2.12)

This leads to a matrix formulation for the equations relating the displacements and stresses
with the constants.

01 A

In B
w = [eh-l C (2.13)

u D

leg] is a 4 x 4 matrix whose coefficients are given in reference [9].

For free vibration the non-trivial solution,which allows the dispersion curves to be obtained,
is found when the matrix of the equations is singular (iie. zero determinant). For a half space
one has two conditions on the upper surface and conditions that the motion is finite
everywhere, i.e. terms in e”, with a positive, must disappear. This is satisfied if A = C and
B = D. This criterion leads to only two equations. The other alternative to be considered is a
multi-layered media. Each finite depth layer introduces four additional constants, Ai, 3;, Ci,
and 12, but at each interlayer interface there will be four equations due to continuity of the
displacements and equilibrium of the stresses, i.e. in general a n-layer system has 4n constants
with 4(n - 1) interface equations and 4 equations from the upper and lower surface. Thse can
be reduced to 4 equations in terms of the upper layer coefficients A1 — D1 only, using the
interface equations and the lower surface equations. This is simplified using matrix algebra
[5,6,9].
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3. ANALYSIS FOR AN IMPUISIVE FORCE ACTING ON A LAYERED MEDIA

Navier's equations, as given in section 2, are solved by Fourier transformations ([3], [4], [7]) to

obtain the time history of the response due to an impulsive force. The models incorporate
dissipation via complex elastic moduli and also consider the action of an angled impulse.

Consider a normal impulsive force which exerts a uniform prssure P/Zd (P is the force/unit
length in the y-direction) over a length in the x-direction of 2d. This imposes boundary
conditions on the surface as

(3. i)

for lxl <d

for lxl >d (3'2)

The equations of motion for the potentials o and w, (25) and (2A6), and the boundary
conditions (3.1) and (3.2). are transformed using the spatial Fourier transforms as defined
below.

«-

l-‘(§,t)=il;z I f(x,t)e'i§P‘dx (3.3)

+-

f(x,t)= I F@,t)e+i§xd§ (3.4)

Initially one considers the case of a harmonic load and the response to an impuLse is given by
the standard inverse Fourier transform from the frequency domain to to the time domain t.

Let 4; = 0(x,z) e'fi" and w = w(x,z) 6‘“, k] and k; be the compressive and shear wavenumbers

respectively and 3,7“ the Fourier transforms of otx,z) and w(x,z) respectively. Then the Fourier

transform equivalent of equations (2.5) - (2.6) and (2.9 - (2.10) are

(3.5)

where, in this case, at2 = £2 - kiand [51 = g2 -

Solutions for 3 and W are

$= A] e‘“ + 31 8‘" (3.7)
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y= A2 2'52 + 132 e” (3.3)

Likewise, G, vial and?n can be expressed in terms of the four constantsA1, B1. A; and B; and

the four uponentials em and €51 [9].

In particular, for a normal impulse of duration T acting on the surface of a half space the
Fourier transformed stresses become

‘ _ z _ A P sin fid sinm
{Z} = 2”? “*2th W": 1 = E: éd co (3.9)
? 4th wail—kl) o

The coefficients Br. 32 in this case are both zero (no reflection from z = m) and hence equation
(3.9) in conjunction with the expressions for the transformed potentials (3.7) — (3.8) and the
relationship with the displacements (2.3) - (2.4) allow the transformed surface displacements
I_l(§,t'|l) and Wfixo) to be obtained.

  

E(§.m)=D14—l:-‘ “g? 5‘2,“ - (3.10)

  

- P ' d ' twatcozfisgf 5‘2,” (3.11)

  

2
2u(§ - 043) — (A + 2|1)l<I

where 1 =—~fi

4193303 - kit 12»: — a + 2m]
(3.12)

2W — a) — (A + 210k?
and

2 = waiting! - k2) 12m: — (A + zmkh

The inverse two dimensional Fourier transform ofBand \7/ was evaluated numerically and the
impulse time histories produced. Developments of the approach to a dissipative system of
different layers bounded underneath by anelastic half space have been performed. The elastic
moduli are taken to be complex, i.e. E' = £0 + in). The formulation in terms of four equations
(for finite layered space) or two equations (for a media bounded by a half space) leads to the
transformed displacements as in equations (3.10) and (3.11) with, in general, more complicated
multiplying factors. For an angled impulse (rt/2 — 9 to the surface normal) the stresses are
a; = Psine and ‘lu = Feast) and likewise the surface displacements can be evaluated.
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4. RESULTS

Figure 1 is an example of the dispersion relationships for three different media showing the
branches of the dispersion curves. Indirectly one an observe the difficulty in recognizing a
particular thickness/moduli if one does not know in advance the structure of the material.
Examples are given in Figures 2 and 3 of the impulse response for a normal and angled
impulse respectively. The corresponding frequency response functions for an angled impulse
are given in Figure 4 as a function of the thickness of the top layer (on a half space). The
computed time and frequency data are for a fairly highly damped structure and indicate the
requirement of needing to be near to the source in order to have a reasonable signal to noise
ratio. Also, a dominant response in both domains may be interpreted in terms of particular
wave types and resonance frequencies from which it may be possible to deduce either material
or geometric (thickness) properties.

5. CONCLUSIONS

An analysis for thedispersion curves and the impulse responses for elastic layered media has
been developed. In particular, the angled impulse and response may be invatigated further
to determine at what angle one has a response of the surface which can be directly interpreted
(or the thickness values. Dissipation and the high frequencies required for interrogation of the
upper layer(s) mean that this approach can be used to complement and interpret the results of
experimental investigations.

6. REFERENCES

[I] M EWING, W S JARDETZKY 5: F PRESS, 'Elastic Waves in layered Media', McGraw—
Hill, New York (I957).

[21 R JONES, 'In—situ Measurement of the Dynamic Properties of Soil by Vibmtion Methods',
Centechnique, §(1), pp] —21 (1985).

[3] D V JONES, ‘The Surface Propagation of Ground Vibration‘, PhD Thesis, University of
Southampton (1987).

[4] A TROCHIDIS, ‘Propagation of Ground-Borne Vibrations from Surface Sources‘, I Acoust
Soc America, m4), pp1146-1452 (1989).

[5] E N THROWER, "I'he Computation of the Dispersion of Elastic Waves in Layered Media',

[Sound & Vib, 2(3). PP210.226 (1965).
[6] R JONES A: E N THROWER, 'An Analysis of Waves in a Two-layer Composite Plate and

its Application to Surface Wave Propagation Experiments on Roads', I Sound :51 Vib, 2(3),
pp328-335 (1965).

[7] D ALLEYNE k I’ CAWLEY, ‘Two-dimensional Fourier Transform Method for the
Measurement of Propagating Multimocle Signals', I Acoust Soc America, 8_9_(3). pp1159-1168
(1991)

[8] L M BREKHOVSKIKH, ‘Waves in Layered Media‘, Academic I’rss, New York (1960).

[9] M Ll, N 5 FERGUSON & R G WHITE, 'Ultrasonic Frequency Propagation through

Inhomogeneous Materials', USI'IT Report No. R1064, University of Southampton (1992).

550 Proc.l.0.A. Vol 15 Part 3 (1993)

 



 

Proceedings of the Institute of Acoustics

WAVE PROPAGATION IN LAYERED MEDIA

 

E III!

E llll
;

ill

I
I )I II

rm '

III!

E m
a
E m
;

ill

'I 1| 2|

'3'" Figure 2. Time History ofthe near field
mu response (parallel to the surface) due to a

i 9,. normal impulsive force.
E
% Ell.

>

llll

'
I !| 2'

L l H! L = wavelenng

H] a Ihiclmess of a lop layer; I

Velocity dispersions of layered media.

Figure 1 (a) A free-free plate.
(in) Two layered plnie.

(c) A layer and half-space.  
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  Figure 3. Three dimcnsional lime hlslon'

for an angled fame aning on a layer

above a half space»

To = duration of Lb: impulse

I mm
x dislance fmm excimion
h thickness of lop layer

u displacement parallel to surface

(above left)

w displacemenl nannal to surface
(above right)

  Figur: 4‘ FWIIL)’ response fat an
angled impulsc from m: lime hiaories
in figure 3.
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