BHITISH ACOUSTICAL SOCIETY: Sympoxium om "Nom=linsar
Acoustica™ at the Tniversity of Eirwinghan on st - 2ad
Awl.'l.19’h.

ADDITIONAL PAPER RECEIVED TCO LATE FUR INCLUSION IN MAIN
PROCEENTRGS . '

SINTERACTION EETWEEN SOUND WAVES PROPAGATING
IN THE SAME DIRECTION.

OJaltinzen axd 5.Tjottar Departsent of
Applied Mathematics, University of Bergen,
Horways




-1 -

1. Introduction. _

In a previocus work (TjStta 1967} we considered the
mutual non-linear interaction between two sound weves travel-
1ing in the same direction. The basic equations of motion
for a homogeneous thermoviscous fluid were "a.pproximted by

linearizing the diffusion terms due to viscosity and heatcon-

duction. Approximated golutions were chtained by applying
the method of successive approximations up to a third order,
the solutlon of the linearized equation being taken as a
first order approximation. Especial attention was directed
to a study of the possibility of pa.ra.ﬁetric amplification.
To a third order approximation it was ‘concluded that ampli-
fication of a smell signal wave with frequency' Wy due to
interaction with a stronger pump wave with freguency
W > wy is possible if and only if tha.genere.ted wave with
sum frequency @, + W, (in the second order épﬁroximtion}
is blocked. However, an upconverter type of parametric
amplification was found to be possible, 1.e. it 1s poseible
to cbtain combined frequency waves with ampiitudes that
exceed the one of the primary w, wave for mederate and
higher volume of w,/w, . The effect wes small - of order
one only. In a more recent work by Berktey and Al - Temimi
(1970} this theoretical result seem to have bee verified
experimenta.lly (larger than one only at high intensity
where higher harmenics in the pump wave h_écoma significant),
We now present the results of m.a.na.lysis of this
interaction problem on the basis of the Burgers' equation,

The exact solutilon of this equation 1s expanded in a series




in the parameters, R, = 241/81 and R, = H2/82 » where M.
and H2 are the Mach numbers, 31 and 32 the Stokes num-

bers of the two interacting waves (defined in section 2).
The series converge for all finite R1 and R2 (The sclution
of the Burgers' equation is not valld for R1 a ®w OT H2 =
The three first terme in the expansion are given explicitly.
and the range of validity of calculations based on the
method of successive approximation ie considered. We also
add Bome comments on the interaction problem between two
collimated beams, and the theory develcoped is used to inter-
- pret some recent experimental observations by Berktay and
Al-Temimi, and by Hobmk and Vestrheim (this meeting}.

2. Basic equations.

We aspgume one-dimensional motion and start with the
Burgers' equation (see, for example Blackstock 1964)
2
%-m%’--n—ggt", (1)
where v 1is the particle velocity, x 1is the distance,
T=t-%—,‘|‘- is the time, c_ 18 the speed of an isen-
o .
tropic and infinitesimal sound wave at the local values of
the temperature and. density. Further B and D are two
g i)
constants defined by B = and D= —3 when
¢ 2¢ o '

L]

1
K4+gh -
0= —2 + b CALY 18 the sound diffusivity expressed
P Y
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in terms of viscosity and heat conduction, P = %-(7 +1) ftor
perfect gases and $ = %(Tﬁ 1} for arbitra.r;} fluids, where
v is the ratio of specific heats and '71.' 18 a constant
related to the equation of state of the rlui:d.'

" Por a monochromatic wave this equation de.scribea the
motion correctly up t¢ order M and s- gelative to the
largest term retained. Terms of relative order He, MS and
52 are neglected. Here M and § denote the Mach nurber
and the modified Stokes number respectively, 1.e.,

o .

. where « 415 the anuglar frequency of the ia'v'_a'. To this

order of approximation the excess velocity u.~ which normal-
1y enters in the Burgers!' equation - 18 ralated to v by
the expression u = ?(71+ 1)v .

The boundary conditions are: - -

vy=0 for t£0, x=0"
v=v°=vmcosu1t+v°2cos%t for ‘t‘>0. x = 0, {2)

We have here linearized the boundary conditions. A more

correct condition would be

o(x(2),5) = () for v> o,

where x(t)u—sinmti-— sinw,t , a.at.he source will
1 2'
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oscillate with finite amplitude. However, Eq. {2) 15 a
proper approximation in our case (cf. Lauvstad, Naze and

Tiotta 1964).

3. Soluticn.
An exact soll_.lt:l.on of Eg. (1) i1 well-known and can be
expressed in the following form {cf. Blackstock 1964)

va%—'i%zn_e, (3}

with
1 - _ (a-1)?
o - fa (A) e ax ,

2 J'erx_ d

B A
Bo(:\) = e 2b fvo(t)dt.

o

Substituting A-% = -2 JyDx g , and inserting the boundary

conditions (2), we find:

-8 dq + T(t),

1 fu -q2+BR‘ sinfw, fr-2¥Bx q) 1+ Rati.‘l.n[ma(-r-2~f£!_x1 q)

(4)



Equation 4 should read

6 = /%“-[ exp{"qz'f'BRlSiﬂ[wl(T“z‘/ﬁ; q]

+Bstin[m2 (1-2vDy q) ]} dg+T(t)
pP-9, second line following Equation 8: "of Eq. 7" should read
"of Eq. 6."

p-10, eighth line should read "neglect the reaction on the w, wave
from the generated waves"

s p-12, fourth line "Fig. (2)" should read "Fig. (12)."




T

~5-
vt':i:l.ct:
where Ry = —pi— (£ = 1,2) are the Reypolds murbers, and
1
7(t) denote transient terms. We have T(t) -0 for t —w

(x rixed). ) ,
¥e now develop the integrand in (4} in a double power
series in R‘landn'a.anﬂmtemtetembytem(mmis

proved to be allowed for finite R, and R, and t large
emu@sotmtthetmsienttemmnegugihle).
Further, putting

v =8, +a Ry a4 ‘“21312 + °22322 + aysR,Ry)
" loph? ¢ axot? + 2350 8y + 3B + (),

we obtain after some calculations
Order R:
-, E

v, = V@ 1 cosa ¥ + Ve e cosu, T - {5)

where o, = Buia is the absorption {1 = 1,2).

Oxder R
v, = -pn,vm?:'xsinh(n,x)maai-r ©
- pnzvoa;kaxamh(u.zx)sitﬂuar

+ % n182(“1"‘a);(u'+62)x("eﬁ l}‘"[‘”ﬁ"“z’"]
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132(") mz);(u +0‘.2)x( —QF_JL ) ) m[(:.) WE}T]

Order Rjz

2 -3, X ' 2
= - %— R12v°1e L [sinh(a.1x)] cosw, T

2 ;(m'”2)1[1 - coah(aJt;‘a.ax)]comE-r

&
_ %E 2.2 ;3.:11[2 ) 3;2a1x . ;601‘](:083@11.
%Zi (2 w, ) -(2(:1«12)1[ 2-{:—_2-1‘ 1]

1

X

eEa.‘_x(ech;tI—Qx + 1) - .2] x coa[ (2@1-02)1']
R voa( © . 1) -({2x ma)xl'-apx ) 1]

x [;&:1::[;2@ +.1) - 2] »® cos[(: :.:144.)2)1]

01'Dl_l

ol

1 2 = Ve r Oy "'“2] )

+[m - W, , R11=b R2’ v
Here the square brackets denote a series of terms cbtained
from the one glven explicitly in Eq. (7) by interchanging w,
and @, , R1 and l‘!e,ve1 and Voo ¢ Oy and a5 -

The serles expansion obtalned in this way ccnverge and
agree term by term with the result that is cbtained if we
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take the solution of the linearized equations as & first
approximation and carry through the succesaive approximations.

Thus, for M1 >> M2 we have only one significant cosw,T

term in Eq. (7):

E; R12 ;(3a1+u2)x[1 - cosh{aJu1uzx)]coau2r

Vo2

which agrees with the result cobtained previously by the
method of successive approximations {Tjgtta 1967).
The emplitude here is always negative, which proves that
amplification of the iy wave is not possible in thls model.
Putting Vo2 © 0 , we have:
-0, X

e COBW, T

v 1

1 = Vo1
1 -21:.1:': -2::1
V2 -3 BR1v°1 e (1 -e x)ain?u.lt

2 -, X -2q,x\2
EE 2 1 1::.)
vy = - R, Vo1 ¢ {(1 -e cosw, T

-2a,x -2a,x -631
+ e (2 - 3e + e x)cosl’:w.l'f} s

which for v,

known solutions for the second and the third harmonic in a

and Vs agree with formulas found in well-

sound wave of finite amplitude {cf., for example, Kech and
Beyer 1960, Blackstock 1965).

Further, we find v, = 0(x} and vy = 0(1:2) for
small x , and




-8 -
v =V, + vy + \r3 —rvo1cosm1t + vdacosmzt for x =0

in accordance with presumed linearized boundary condition

for x =0,

k, Interpretation of the solutiom.

Let ® ot denote nonlinear interaction between waves
with frequencies « and & in a first order (quasi-linear)
approximation. We may then interprete the different terms

in vj:

Term Interaction

coswir w, o Eu‘

cosuw, T w, © (m1—m2) and w, © (w1+m2)
cos3u11 m1 o] 2(»1

cos[ (20, - E,)-r] ®, © (“’1""2) and w, o 2w,
cos{ (2w, + wa)-r] @, ©

(u1+u>2) and @, © 20,

A similar table is obtajned for the terms in the square
brackets in Eq. (7).

In v, the following standard. interactions are repre-
sented: w, 0w, , Oy oWy, 5 W Oy . In the litera-
ture studies of such non-linear effects as end-fire &rrays
and up-converter type of parametric amplifications are
based on the quasi-linear approximation of the interaction

between two waves, , ¢ L

1 o - More precise information of

'
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the range of valldity of this approach can now be obtained
by calculating the terms in vy - This is discussed in the

next section,

5. Up-converter parametric amplification,

Introducing
o. def Vi
* “ag%
Yoo ®
we find

(8

6 = wpte; PRy -a,X 23 apX A
" o, - & -

Here v, and v denote the velocity amplitudses of sum

and difference fraguency wave, respectivelx‘(cf"Eq.(TJ}.

For W, >> w, , we have

-—a.1x LT
G, = - BRax e . (9)

and thus

Max|G,| = ﬁR1e'1 for x=_q—:-

Berktay (1965), Berktay and Al-Temimi (1970} have put
mich emphasis on the posaibility of obtalining ja,! > 1,

as this could form the basis of design for up-converter
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para.metrj.c amplifiers. Experimentally, they have thus far
observed |%l = 0(1).

A measure of the reaction from the generated waves in .
the second approximaticn on the primary waves is found by
studying the third approximation, or the term of order Rz'
in our expansion. .

We now assume M, > M, . A condition which enables us to

neglect the reaction on the Wy wave the generated waves

. with sum and difference frequencies, have then been gilven

previcualy, Tjstta (1967).' The results here, based on
Burgers' equation, agree with his results. We find:

Lie

= %E 312e-2u1x|:1 - cosh(EJa1n2x)] (10)

‘for the amplitude of the second term (dominant cos 0T
term for . M, >> M,) in Ea. {7), when measured in terms of the

empl:l.tude of the primary wave with frequency &, {i.e.
e 2M) .

For N.I >> ma this becomes

-2
1, - - 2af’('"ﬁ‘) @mZe T (1)

wich leads to
2_2(% 2 2
2 -
Max|I,cl = PR, (—m1)_e (12)

Similarly, the amplitude of the first term (domjnant cosw,T

term for M, >> My) in Eq. (7) 18 given by .
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I

-2 2
n = ,2. 52312 1 l-sinh(u x)] (13}

when measured in terms of the amplitude of the primary
wave with frequency o, (1.e., v, Al }o Thus I,
decreases from zero at x = ¢ to an asymptotic value
-ﬁ2R12/8 for x large. We have

2R2
1
Max]I,hI = 5 for ax 2. {(1%)

In order to have a gain in the waves with sum and dif-
ference frequencies, t.e. [0,] > 1, it is necessary that
BRI > e . The convergence of our expansion is then slow,
and the two first terms are not sufficlent to predict the

solution accurately encugh. For >> w, we may still

have !la.xl11 | << 1 and the w,-wave is not ‘modified by

third approximation (term of order Rj) However, the -
wave is modified at scme distance. {x > 1/1:1) from the source
due to ®, o 2, interaction and higher harmonic effects
have to be accounted for, {when PR, = €, I, = -0.7 for
X e i, HaxlIm[ = 0.9). Further-‘the combined frequencles

o,

u1 F 4 oy are now cleose to . m1 , making a separation between
them difficult. _

In their recent experiments Berktay and Al -Temimi
(1970) worked with an intensity of about 0,16 W/con® for
the pump wave (m1-wa.ve) in order to avold exstra attenu-
ation erfects due to higher intensity. This corresponds to

= 3,2.1077 1in water, and with P = 3.5 this leads to
BR, = 2 and PR, =1 at the frequencles of f, = 2.79 MHz
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and f1 = 5.9 MHz, resp., used in the experiment. Here
MaletI < {1 in gualitative egreement with the observations,
Further, our theory predicts Gt independent of Wy for

w. >> . , which agrees with observations {rig. (2) ref. [2]).

1 2
They also observe |G| > 1 , but then with higher intensi-

ties where effects of third order and higher in the pump

wave become important.

6. Interaction between beams.

So far we have only considered infinite plane waves.
For the case of two plane beams propagating in the same
directioﬂ, we have on the axis of symmetry the following_
expression for the pressure of the difference fregquency wave
{to order Ra)

P = %% A Q(x? , x>0 (15)

o -. -
[ o o loBE
o

_ euJ(x+z)!+aﬁ + 3x)

3 1(x,-x3)z 1x(x+2z) 1x]x-2{
]P dz e {e - e }

=]

a(x)

J{x)

1{x, -2¥)x
. 21 e 172 _ eixx (17)
@, +a,ma 2k+i(u1+a2—a)




- 13 -

Here ara: X = kt+iz, X, = k:1+iu.. X = l(2+ia2, k= k.1-k2> 0,

a the beam radius, and

2 *
A = PPk Vg,
1(11x-u1t) l(lzanzt)
The primary WavWs are: ¢1 = ¢1° e » ¢2 = Wao e
J(x)} corresponda tothe interaction between two infinite
plane waves. It is well-known that Max|J| 1s obtained at 1

o distance

" ]
in 1132

"1.1 - 61 + Cl\e - &
from the sound-source. For the case of two interacting
beams, the generated difference frequency wa..ve 18 observed
to have maximum amplitude much nearer the sound than predlc-
ted by the infinite plane-wave theory, {(cf, Hobmk (1967)).

The integral in Eq.{16) is now evaluated numerically,
and some results are shown in Figs. 1-3.

For the case &, >> {¢f. Fig.1) we find [l flue-
tuating about |J|. The generated difference frequency
wave cbtains 1ts maximum amplitude near X = ;—1 , which is
the position for maximum of |J] , and is not propagated
for out of the interaction region as is the case for w, = O,

Berktay (1967), Berktay and Al-Timimi (1970) have

previously pointed out and emphasi_zed the difference between

the model of infinite plane waves and the one with plane
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beams, when analyzing the possibllity of an upconverter
type of amplification. The results here do not support this
conclusion, in that Q] and |3 lead to approximately

the same values of the factor 4@, for >> W

When ©, & &, {cf. Figs. 2,3} we find for the highest
value of ka a fluctuation of iqll about (3|, similar
to the case with o, > Wy - For the lower values of ka
(cf. Fig.2) there are such fluctuations only near the source,
and the position of maximum is moved toward the spurce for
decreasing ka . This is in gualitative agreement with
experimental observations by Hobsk (1967} and by Hobmk and
Vestrheim (1971).(The intensities are kept high in the first
work, and direct comparison is not Justified). In the last
work alsoc these authors have computed this effect for low
values of ka and have made some guantitative comparisons
with thelr recent experimental observations. They neglect,
however, the effect due to backseattering., We have computed
@(x) when neglecting in Eqs.(16) and (17) the terms due to
back-scattering (second term in (16), first term in {17),
and integrating from 2z =0 up to 2z =X only). The
effect from these terms is small, and in our examples 1t 1is
significant only very near the source {up to about £%).
Here, of cource, also the approximations introduced by
linearizing the boundary conditions may lead to errors in
the results. In a discusslon of the fine-structure of the
fluctuation in this region, it may be necessary to take
into account the effect due to back-scattering. Near-field

effects in the primary waves of frequencles w, and Wy
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may also lead to a fluctuation and thus fine-structure in
the generated waves, but these are not taken into account
in the preéent theory. Neither are the translent effects
{from T(t) in Eg.(%)) taken into account. For @, & &,
we find, for the case of infinite plane waves, that I1 e

decreases from zero &t X = 0 to the asymptotic value

21-'(2

for large a,X (u.1:il 2 1 in practice)

and I1h is as before.

In this case Hobmk arid Vestrheim {1971) observe an increase
in the intensity of the difference frequency wave with in-
ereasing intensity of the primary waves {having about the
same intensity) for PRE1 , indicating erfects of higher
order than the second. This is in qualitative a.greement.
with the present theory as Max|I [ = -i'; and Max|I,, | = %
for PR = 1 and the thi:;d crder .term in-our expansion '
becomes important (Note, however, that their experiment 1s

for two beams and not for infinite pla.ne'waves as here).
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Figure Captions.

Figures 1 - 3.
Variation of the difference-fregquency pr@péure level with

the distance from the sound source.

I7(x)] : Infinite plane waves.

la(x)| : Flane beams.
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