
Wm
ma
m
m

W
m

Wm
w

m
mw
W
m
m

m
m.
wm

MN

WW
w
W.
W
m
m

 
.32

in:331.3.3{cu-Ian:335
a..318383..«I53326

naggafi

can

gfigfig—gggggg

.Kfidfl.

claivllfiguohgaifinounusfl
%f85§.§§§



 

1. Introduction. _

In a previous work (matte 1967) we considered the

mutual non-linear interaction between two sound waves travel-

ling in the same direction. The basic equations of motion

for a homogeneous thermviscous fluid were approximated by

linearizing the diffusion terms due to viscosity and heatcon-

duction. Approximated solutions were obtained by applying

the method of successive approximations up to a third order,

the solution of the linearized equation being taken as a

first order approximation. Especial attention was directed

to a study of the possibility of parametric amplification.

To a third order approximation it was concluded that ampliQ

fication of a small signal wave withfrequency to? due to

interaction with a stronger pump wave with frequency

01 > we is possible it and only if the-generated wave with

sum frequency «:1 + we (in the second order approximtion)

is blocked. However, an upconverter type of parametric

amplification was found to_hepossible, i.e. it is possible

to obtain combined frequency waves with amplitudes that

exceed the one of the primary we wave for moderate and

higher volume of (01/02 . The effect was small - or order

one only. In a more recent work by Berktey and A1 - Temimi

(1970) this theoretical result seem to have has verified

experimentally (larger than one only at high intensity

where higher harmonics in the pump wave become siytificant).

We now present the results of an analysis of this

interaction problem on the basis or the Burgers' equation.

The exact solution of this equation is expanded in a series
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in the parameters, 'R‘ =- 15/51 and R2 = 142/552 , where u».

and 142 are the Mach numbers, 31 and $2 the Stokes num-

bers of the two interacting waves (defined in section .2).

The series converge for all finite R1 and 82 (The solution

of the Burgers' equation is not valid for R1 = a or R2 -

The three first terms in the expansion are given explicitly.

and the range of validity of calculations based on the

method of successive approximation is considered. We also

Add some comments on the interaction probl between two

conimted beams, and the theory developed is used to inter-

- pret some recent experimental observations by Berktey end

Al-Temini, and by Hobak and Vestrheim (this meeting).

2. Basic eguations.

He assume one-dimensional nation and start with the

Burgers' equation (see, for example Blackstock 196!)

2
av 3V_D3V (1)

where v is the particle velocity. 1 is the distance,

r:t-—§:,t isthetime, co isthespeedofanisen-

tropic and infinitesim sound save at the iced values of

the temperature snd‘density. nix-the:- B and D sre two

a
constants defined by B - and D - when:2! _.3 ,

o 2co
I

K + ll
5 - ——2-— + 1-11! is the sound diffusivity expressed

P 'Y
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in terms of viscosity and heat conduction, B uni-(1 +1) tor

perfect gases and p = $411+ 1) tor arbitrary fluids, where

'y is the ratio or specific heats and '1,- is a constant

related to the equation of state or the fluid;

For a monochromtic wave this equation describes the

notion correctly to order II and 3 relative to the

largest term retained. Terms or relativeomer M2, us and

52 are neglected. Here H and S denote the Inch number

and the modified Stokes number respectively, i.e..

“3L , 5.?!
co o I

where a is the snugler frequmcy or the isv'a. To this

order of approximation the excess velocity ‘u J- Uhich normal-

ly enters in the Burgers' equation - is related to v by

the expression u = $411+ 1)v .

The boundary conditions are: ' »

v-O for tso, x-O'V

aV=V° Vo'cosu1t + vozcosuat for t > 0 . x -= 0. (2)

We have herelinearized the boundary conditions. A more

correct condition would be

v(x(t),c)=2‘-§§l we.

“01
“‘1

V '.

sin-:1t + —°§ unmet . es the source will
02-

vhere x(t) =

   



 

_h_

os'cillate with finite amplitude. However, Eq. (2) is a

proper approximation in our case' (cf. Lauvatad', Naze and

mama 1961+) .

3. Solution.

An exact solption of Eq. (I) is well—Imam and can be

expressed in the following form (cf. Blackstqck 1961i)

v-%B§;sn.e. (3)

with

 

Substituting 1-1 = -2 JD: q , and inserting the boundary

conditions (2), we find:

.e=‘_J" dq '+ fit).
f‘e-qzwn, sink», 6-2.5? q) 1+ R251n[u2(1-2JBT q)

(u)



 

Equation 1» should read

9 a exp{—q2+gnlsin[m1(T-2~rf)7 q]

+BstinIm2(T-ZVDX q)]}dq+'r(t)

p.9, second line following Equation 8: "of Eq. 7" should read
"of Eq. 6."

p.10, eighth line should re'ad "neglect the reaction on the m2 wave H
from the generated waves"

t p.12, fourth line "Fig. (2)" should read "Fig. (12)."
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Ye

M Bin—gt? (1:1,2) arethzneymldammm.m

r(t)' denote tnnsinnt terms.

(1115211). A

Iemwdevelapthemtemndm(b)1nadmhlepover

sex-1231a R1mdB‘2.mdmtegntefiemvytem(m¢hu

provedtobemaledtornnme and t Luge

amushsotmtthetmsienttemmnegugmle). '

lie have 1(t) *0 for t---

Further, putting

v = no + «"31 _+ “1232 + “2,1112 + 1:221:22 + 523%)

+ (55111173 + «32323 1- 53331232 4» 33,3111 2) + 00*).

we obtain me:- some calculations

Order R:

"‘1x '“2‘ _ (5)
VI = VO‘E COM“? ‘9‘ V028 COBHaT

where :31 = M12 is the absorption (1 a 1,2);

Order

 

x .

v2 = -Bn1vo‘e ‘ sinh(u‘x)sin2611 (6)

- page; ainMuthmavar

-- ‘ at:- ‘
“ gt n132(“‘1""a)°m'“2k("° 'ua Hwfléh]
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-( ) -2~r’-_
+ EEC; 3132(m1m2)e “1+0? KG “152! _ 1)sm[(w1w2)r]

Order R}:

2 Jaix

v = — a R v e [smith x)]2cosm 1
3 '2' 01 _ 1 1

+ g—n1av02;(2fl'+¢2)x[1 - cosh(2J§1uzx)]cosu2t

1

2 47%" '2"1" '6‘“:
- g- RI,I vo1e [2 - 3e 4- e fleesaufi

+
“1 ) ;(2u14°2)x[e2~’37§* _ 1]

2
R1 v°2(2 Lg - 1

Eu x 2401 a x -

x [e " (e 1 2 + 1) — 2] x cos[(2w1-02)T]

2 m -(2¢+a )x -2~Eax

-%—R12v°2(2m—1+1)e 12 [e 12 -1]

2

, [surpw H) - a] x WWW

2

2

2

+["’1°‘°"’2 ' R1“= R2 ’ vo1‘="’oe ' c‘1""’°‘2] (7)

Here the square brackets denote a series of terms obtained

from the one given explicitly in Eq- (7) by interchanging «)1

and m , R1 and Ra,v°1 and v02, m1 and (:2.

The series expansion obtained in this way converge and

agree term by term with the result that is obtained if we 



*—
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take the solution 0: the linearized equations as s first

approximation And carry through the successive approximations.

Thus, for M1 >> 14,2 we have only one significant coma-r

term in Eq. (7):

E:- 312 e(k1”2)x[1 - cosh(2~lm1uzx)]cosuar
'02

which agrees with the result obtained previously by the

method of successive approximtions (Motto. 196?).

The amplitude here is always negative, which proves that

amplification of the m2 wave is not possible in this model.

Putting v02 a o , we have:

1 -2a1x -2u1

v2 = - E flRIVo1 e (I - e x)sin2u11

2 H: x -2u 2
2 1 1

v3 = - gr 1!‘ v01 6 {(1 - e ’cosm‘l'

-2u1x 4qu ~6u1
+ e (2 - )e + e x)cos)w11} ,

 

which for v2 and v3 agree with formulas found in well-

lcnow-n solutions for the second and the third harmonic in a

sound wave of finite amplitude (cf. for example, Kech and

Beyer 1960, Blackstock 1965).

Further, we find v2 = 0(x) and v3 = 0(x2) for

anal]. x , and



 

_ a -

v a v1 + v2 + v3 avo‘cosw1t + vo'acoeuzt for x -00

in accordance with presumed linearized boundary condition

for x=0.

1‘. Integretstion of the solution.

Let u o n denote nonlinear interaction between waves

with frequencies a) and n in a first order (quasi-linear)

approximation. We may then interprete the different terms

in v3:    Term Interaction  
cosm11 U1 0 2t.»1

comer w1 0 («31-052) and u‘ o (01w2)

c053u11 «)1 o 20‘

casuam1 - 2h] u a (001-02) and «)2 o 2mI

cosuzm1 + teak] u‘ o(01%) and me o 2m1

A similar table is obtained for the terms in the square

brackets in Eq. (1).

In we the following standard. interactions are repre-

sented: m1 0 H1 , we 0 we , (J1 0 m2 . In the litera—

ture studies of such non—linear effects as end-fire arrays

and up-converter type of parametric amplifications are

based on the quasi-linear approximation of the intersction

between two waves, a) o a)1 2 . More precise im’omtion of

a:
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the range of validity of this approach can now be obtained

by calculating the terms in v5 . This is discussed in the

next section.

5. [m-converter Erwetric mlificetion.

  

Introducing

v
G: dgr _t

v i?"
02

we find

G-_‘°2*“‘1 9R1 “1" *ZJ‘H“? “ I» I 8)
i _ “2 T e e .- . - . (

Here v+ and v_ denote the velocity amplitudes of sum

and difference frequency wave. respectively (cf. Eq.(7)).

For N1 >> 02 , ye have

'G1X _ ,‘

Gt=-BR1u1xe ..' _. (9)

and thus

I 1
1’c>rx=~‘I -mlstl = Blue- I ‘

Berktay (1965), Berkfiy and Al-Temimi (1970) have put

much emphasis on the possibility of obtaining lat] > 1 ,

as this could form the basis of design for up-cbnvez-ter
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parametric amplifiers. mperimentally, they have thusfar

observed lflkl = 0(1)-

A measure or the reaction from the generated waves in .

the second approximation on the primary waves is round by I

n3
studying the third approximation, or the term of order

in our expansion.

He now assume 141 >> 142 .

neglect the reaction on the (-02 Have the generated waves

A condition which enables us to

- with sum and difference frequencies, have then been given

previously, Matte “967). The results here, based on

Burgei-s' equation, agree with his reaults. We find:

2 -25 at

11c = %— R12e 1 [1 - cosh(2Ju1u2x)] (10)

for the amplitude of the second term (dominant cos £021

term for . 14‘ >> M2) in Eva-(7), when measured in terms of the

amplitude of the primary wave with frequency 02 (Le.

4:21:

1102 e ) . For H1 >> use this becomes

2 -2u x
2 2 2 1

I1:: " ' R1(“1")-e (‘1)

rich lends to

2 2 “ 2 22 .

Mexllml = p R“ (Lo—1); (12)

Similarly, the amplitude of the first term (dominant cowir

term for M1 >> M2) in Eq. (7) is given by
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-2a 3: 2

11h = - ,1: 621212 e 1 [31211101130] (13)

when measured in terms of the amplitude of the primary

» '41 x

wave with frequency 01 (i.e., 1101 e 1 ). Thus 11h

decreases from zero at x = O to an asymptotic value

-32R12/8 for 1 large. We have

32R 2
1

B

 

115111th a for III I 2 _ (1b)

In order to have a. gain in the waves with sum and dif-

ference'frequencies. i.e. [Gil > I , it is necessary that

BRI > e . The convergence of our expansion is then slow,

and the two first terms are not sufficient to predict‘ the

solution accurately enough. For 01 >> «:2 we may still

have mum] << 1 and the w -ws.ve is not modified by
2

third approximation (term or order R3). However, the m1-

weve is modified at some distance. (x _> 1/u1) from the source

due to 491 _o 201 interaction and higher harmonic effects

have to be accounted for, (when 5R1 = e, I1h =- —0.7 for

u x = 1, Maxllml = 0.9). Further the combined frequencies
1

(A1 1 use are now close to V m1 , making a separation between

them difficult. .

In their recent experiments Berktsy and Al-Temimi

( 1910) worked with an intensity or about 0.16 W/com2 for

the pump wave (m1-wave) in order to avoid exstra attenu-

ation effects due to higher intensity. This corresponds to

M = 3,2~1o‘5 in water, and with p =- 3.5 this leads to

BR1 3 2 and 9R1 r: I at the frequencies of f1 = 2.79 MHZ  
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and f1 = 5.9 MHZ, resp., used in the experiment. Here

MaxIGtI < 1 in qualitative agreement with the observations.

Further, our theory predicts C-t independent of me for

Lu >> L02 , which agrees with observations (Fig.(2) ref. [2]).
1

They also observe {Gil > 1 , but then with higher intensi-

ties where effects of third order and higher in the pump

wave become important.

6. Interaction between beams.

50 fer we have onlyconsidered infinite plane waves.

For the case of two plane beams propagating in the same

direction, we have on the axis ofsymmetry the following-

expression for the pressure of :the difference frequency wave

(to order R2):

P_=127—;Aq(x). x>o (15)

- 1—721
ml) = f dz eiu‘ 12,2{eix (x Z) +8. - (16)

o

_ euJ(x+z)E-oafi + xx)

am . f .. .i‘*I-*2’={.”‘x+“ -:*'*-='}
O

i(x —l')x
ax e I 2 _ e11): (17)

u‘daZ-u 2k+i(u1+a2-a.)
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Here are: x = K+in, x1 = k1+ia, 12 = k2+ia2. k a k1-k2>0,

a the bean radius, and

2 .

A u ’ppok Viov‘ao ‘

1(11x-m1t) “lax-mat)

Theprimrywavwsare: w=w e .W=W E
1 1o 2 20

on between two infinite
U(x) corresponds tome intemcti

is obtained at ‘

plane waves. It is well-known that MsxlUI

   

a. distance

aIn 1:2

"M ° + _
5‘ Ce cl

from the sound-source. For the case of two interacting

beams, the generated difference frequency wave is observed

have maximum amplitude umch nearer the sound then

(cf. Hobsk (1967)).
to

predic-

ted by the infinite plane-wave theory,

The integral in Eq.(16) is now evaluated numerically,

and some results are shown in Figs. 1-).

For the case «2‘ >> m2 (er. Fig.1) we find lql t1uc-'

tun ting about I3 I . The generated difference frequency

a: x = 1— , which is
wave obtains its maximum amplitude ne a

1

the position for maximum of I'JI , and is not propagated

for out of the interaction region as is the case for 1.11

rktay and Al-Timimi (1970) have

d the difference between

=1 (1)2.

Berktay (1967), Be

previously pointed out and emphasize

the model of infinite plane waves and the one with plane
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besma, when analyzing the possibility of an upconverter

type of amplification. IIy'he results here do not support this

conclusion, in that [Q] and I'JI lead to approximately

the same values of the factor at for (A1 >> use.

When «)1 9-1 «)2 (cf. Figs. 2,3) we find for the highest

value of ka 3. fluctuation of lql' about IUI , similar

to the case with M1 >> 02 . For the lower values of ks

(cf. Fig.2) there are such fluctuations only near the source,

and the position of maximum is moved toward the source for

decreasing ka . This is in qualitative agreement with

experimental observations by Hobaak (1967) and by Hobssk and

Vestrheim (1971).('me intensities are kept high in the first

work, and direct comparison is not Justified). In the last

work also these authors have computed this effect for low

values of k3 and have made some quantitative comparisons

with their recent experimental observations. They neglect.

however, the effect due to backseattering. We have computed

ch) when neglecting in Eqs.(16) and (17) the terms due to

back-scattering (second term in (16), first term in (1'7),

and integrating from 2 = 0 up to z = x only). The

effect from these terms is small, and in our examples it is

significant only verynear the source (up to about 55).

Here, or cource, also the approximations introduced by

linearizing the boundary conditions may lead to errors in

the resultS. In a discussion of the fine—structure of the

fluctuation in this region, it my be necessary to take

into account the effect due to back-scattering. Near-field

andue
effects in the primary waves of frequencies 01
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may also lead to a fluctuation and thus fine-structure in

the generated waves, but these are not taken into account

in the present theory. Neither are the ‘transient' effects

(from .Ttt) in Eq.(‘i)) taken into account. For «:1 =1 :32

we find, for the case of infinite plane waves, that I“:

decreaaes from zero at x = 0 to the asymptotic value.

 

BER 2

I": S - I“ for large nix (u1x i 1 in practice)

and 11h is as before.

In this case Hobak and Vestrheim (197]) observe an increase

in the intensity of the difference frequency wave with in-

creasing intensity of the primary waves (having about the

same intensity) for 611:1 , indicating effects of higher

order than the second. This is in qualitative agreement

with the present theory as mllml =11: and MaxIIml = %

for 5R 1: 1 and the third order term in our expansion

becomes important (Note, however, that their experiment is

for two beams and not for infinite plane waves as here).
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F1521: captions .

Figure; 1 - j. - 1

Variation' of the differencevfrequency prqséure level with

the distance from the sound source.

l3(x)l : Infinite plane IBVEB.

IQ(x)l : Plane beams.
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