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1. INTRODUCTION

Last decade has seen considerable research in the area of speech recognition. however the basic

feature extraction stage has not changed much. The feature extraction stage tries to simulate the

characteristics of the human ear and detects features that can be used effectively for classification

of speech. For this purpose Bark scale and Mel scale [1], [2] have beenproposed. The Mel scale is

often approximated as linear scale between 0-1000Hz and then as logarithmic scale beyond

1000Hz. The Cepstral Coefficients derived after filtering the speech signal by the Mel filter bank

gives the most commonly used Mel Frequency Cepstral Coefficient (MFCC) features. The Short

Time Fourier Transform (STFT) is usually used for the extraction of MFCC features. Since STFT

has a fixed time-frequency resolution, it is difficult to detect sudden short burst of high frequency in

a low frequency background. This problem is predominantly encountered in the case of stop

(plosive) phonemes. hence the MFCC features give poor recognition performancefor these

phonemes.

Recently, the Discrete Wavelet Transform (DWT) has been used for feature extraction [3]. [4], [5],

[6], [7]. This is because DWT can be effectively used to separate out short impulses from a low

frequency background easily by using its multi-resolution capability. This property of DWT has

been exploited in phoneme recognition by using the high-energy wavelet coefficients as features

[3], [4], [5]. However, the DWT suffers from two problems. First is the problem of shift variance i.e.

if the signal is slightly shifted the wavelet coefficients will change thus. direct use of wavelet

coefficients as feature is effective, The second problem inherent to DWT is that it decomposes the

lower frequency sub-band obtained from the previous decomposition.

The Wavelet Packet (WP) which overcomes the second problem has also been proposed for the

selection of features by using the best basis algorithm [6], [7]. [8]. However, this technique also

suffers form the problem of shift in the signal as it results into different set of basis for a shifted

version of a signal. In this paper we propose log energy features based on DWT. which are shift

resistant and give better recognition performance as compared to earlier features. Also we put

forward the use of Admissible Wavelet Packets (AWP) which gives more flexibility in partitioning

the frequency sub-bands for the extraction of these new features.

The paper is organised as follows. In Section 2, we give a brief introduction to the DWT, WP and

AWP. Section 3 gives the details of the feature extraction process by using the above wavelet

decomposition techniques. Section 4 elaborated the experimentation procedure and gives the

results obtained for the phoneme recognition using the TlMlT database. The concluding remarks
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on the experimental results are given in Section 5

2. WAVELET TRANSFORM

' - 2.1 Discrete Wavelet Transform

Wavelet transform is a time-frequency analysis technique, which decomposes signal over

dilated and translated wavelets. Wavelet is a function we L2 (9t) (Le. a finite energy function)

with zero mean and is normalised ("\V“ = 1) [9}. A family of wavelets can be obtained by scaling

w by s and translating it byu.

\l'u.s(‘) = 5—1/2W(l-Tu] (1)

The Continuous Wavelet Transform (CWT) of a finite energy signal ((t) is given by:

 

cwmu,s) = Tt(t).s“’2.w‘[3;—"}n (2)
—oo

where w’(.) is the complex conjugate of w(.). The above equation can be viewed as

convolution of the signal with dilated band-pass filters. The DWT of a signal f[n] with period N is

computed as:

- N—'1 - . _
- DWTf[n’,al]= 2 l[m1.a"’2.w 1—" (a)

m=0 a1

where m and n are integers. The value of a is equal to 2 for a dyadic transform.

The signal representation is not complete it the wavelet decomposition is computed up to a

scale ai. The information corresponding to the scales larger then aJ is also required. which is

computed by a scaling filter and is given by:

N- . _
SFfln,al] = :1 f[m].a'“2.¢ (4)

m=o 8'

where ¢(n) is the discrete scaling filter.

By using the DWT the problem in recognition of stop phonemes is expected to be overcome as

higher frequency burst can be easily detected by going up high in frequency and reducing the

time window. Thus high frequency burst within the phonemes which were undetectable under
STFT can be detected by using the DWT.

The DWT performs the recursive decomposition of the lower frequency sub—band obtained by

the previous decomposition in dyadic fashion. Hence the DWT gives a left recursive binary tree

structure where the left child represents the lower frequency sub-band and the right child

represents higher frequency sub-band. ln WP decomposition, the lower as well as higher
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frequency sub-bands are decomposed into two sub-bands thereby giving a balanced binary tree

structure as shown in Figure 1, Each node ij, in the tree represents the depth j and the

number of node p to the left of it.

o

0
W1

w3 W3 W9?
Figure 1: Balanced binary tree achieved by the full Wavelet Packet decomposition

The two wavelet packet orthogonal bases generated from a parent node (W?) are defined as:

vffnk) = E htnlvl’lk—zin) (5)
n=rou

wffr‘tk) = if ginlv’i’lk—Z‘n) (6)
n=—«.

where h[n] is the low pass (scaling) filter and g[n] is the high pass (wavelet) filter.

The WP decomposition results in over-complete basis. For a full i level decomposition there will
—1

be over 22] orthogonal bases. From the above library of bases (also called as packet table)
best basis is to be selected. Selection of the best basis tries to have best frequency partitioning
by reducing a cost function [5]. However. application of the best basis algorithm to the pattern

recognition problem is difficult, as they are not translation invariant. For a shift in the signal, the
wavelet packet decomposition will give modified coefficients, thereby yielding different basis
when the cost function is minimised Since energy based features are used, therefore this may

result into different number of features, which may further create problems at the classification
stage.

2.2 Admissible Wavelet Packets

For speech recognition it full WP decomposition is applied. it will cause the features to be

distributed uniformly over the entire frequency band. The speech recognition research shows

that features from higher end of the frequency spectrum have very little discriminatory

information. Due to this reasons full wavelet packet decomposition cannot be used effectively

for the extraction of features from phonemes.

in order to overcome the above problems we use a modified wavelet packet decomposition,

which is in-between DWT and WP and gives the liberty to partition the lower frequency sub-

band or the higher frequency sub~band. This is known as Admissible Wavelet Packet (AWP).

which gives an admissible binary tree structure. Figure 2 shows an example of tiling of the time-

frequency plane by one of the admissible wavelet binary tree structure for a four level of

decomposition. The corresponding admissible binary tree structure is shown in Figure 3 giving
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details of splitting of the frequency bands. By using the AWP we can have more number of
bands in the frequency region carrying more discriminatory information. Thus the features
derived form these frequency sub-bands will have better classification ability. Also, since the
partitioning of the frequency axis is fixed, therefore problem encountered in the best basis
algorithm is not encountered here.

BkHz
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Figure 2: An example of tiling by wavelet packet of the time-frequency plane.
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4 4

Figure 3: Admissible wavelet packet binary tree for tiling of time-frequency plane of Figure 2.

3. Feature Extraction

Here in this work a frame of 32ms (512 samples) is formed for analysis of a phoneme and different

levels of DWT decomposition are applied by using 'Daubechies 6' wavelet filter. A ‘k' level of
discrete wavelet decomposition will split the frequency band into ‘k+1' sub-bands. First of all, the

total energy of the wavelet coefficients in each frequency sub-band is calculated. This is
normalised by dividing the total energy by the number of wavelet coefficients in each sub-band.
The lograthim of normalised energy in each sub-band is used as a feature vector. Although this
technique overcomes the problem of shift in the signal, the second problem discussed in Section 2
still remains. To overcome this problem the AWP is used to tile the time-frequency plane giving

more frequency sub-bands in 300Hz to 4kHz range. Once the sub-bands are obtained the process

of freature extraction is similar to the one explaned above.
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4. EXPERIMENTATION

Vowels, unvoiced fricatives and unvoiced stops from the dialect region DFlt (New England region)
and DFI2 (Northern part of USA) of the TIMIT database were extracted for training and testing the
classifier. A total of 151 speakers were usedout of which 114 were used for training and the rest
for testing the classifier. There were 49 female speakers in all out of which 37 speakers were used
for training the classifier. For classification a Linear Discriminant Analysis is used [10], [11].

in the first experiment the DWT was used to decompose the phoneme from 4 to 7 levels, thereby

giving 5 to 8 frequency sub-bands. The energy features as well as the proposed log enegy features
were calculated and the result obtained for the unvoiced stops is shown in Figure» 4. It can be

clearly seen that Iograthimic compression when applied to the energy features gives a better
recognition performance. Also it can be seen that by incearsing the level of decomposition,
recognition performance does not improves much. This is due to the fact that more features are

derived from the lower frequency end of the signal spectrum which has less discriminatory
information.

:
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Figure 4: Comparative recognition performance of unvoiced stops using DWT based features

In the second experiment the AWP was used to decompose the phonemes and features were

consequently extracted. Figure 5(a) shows the recogntion performance for the unvoiced fricatives

based on the DWT and AWP for energy and log energy feautres. It is clear from the Figure 5(a)

that AWP base log energy features outperform for all except the first case.

The results obtained for the recognition of the vowels is shown in Figure 5(b). Since the vowels

have lower frequency componemts reason the DWT based features even at higher level of

decomposition give good results (which is not seen in the case for the unvoiced phonemes).

Hence, by using the AWP to have a different time-frequency tiling does not result in huge

improvement in the recognition performance as found for the unvoiced stops and fricatives.
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Figure 5: Comparative recognition performance of (a) unvoiced fricatives and (b) vowels for
features based on DWI and AWP

5. CONCLUSION

The features obtained by using theAWP are found to be superior compared to the DWT based
features. The AWP further overcomes the problem arising due to the features coming from very
low frequency at higher level of decomposition by DWT. Also the logarithmic compression does
help in significantly improving the recognition performance of the unvoiced stops and fricatives.
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