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Abstract

In seabed classificationfrom sonar data, it is important
to extract reliable features which maybe used to discrim-
inate between different seabed types. In this paper, we
evaluate a-number of different methodsforfeature extrac-
tionfrom sonar data. -
Raw backseatter data from the Simrad EM [000 Multi-

bearn Echo Sounder were selected from five areas of vari-
ous seabed types. Each area was divided into 28 smaller
regions. .More than 50 features were selected from each
region. The features may be divided intafour categories.
features. based on the bar/(scatter strength. features based
on the backseatter probability density function. features
based on the spectral distribution, and features based on
texture. All features were evaluated based on their ability
to dt'flerentiate between the various seabed types, and the
sensitivity with respect to the number of samples used.

We have shown that features based on the backseatter
strength and features based on the spectral distribution
discriminate the seabed types very well, while some of the
features based on theprobability densityfunction andone of
the texturefeatures may give additional separation between
the seabed types.

1 Introduction

This work is a part of a seafloor mapping project. The
project was started in December 1990 by Simrad Subsea
AIS and Norwegian Computing Center (NR). At NR, the
work has been concentrated on feature extraction and sta-
tistical classification [4]. In January 1992, Center for In-
dustrial Research (SI) and NR started a work on neural
network ciassification[5], and in June 1992 Simrad AIS
"and NR joined the ESMAC project,

' ‘ 'Feature' extraction is the foundation of successful classi-
fication. It is known that the backseatter strength is corre-

_ lated with the seabed type. In [1], Pace & Gao suggested a
t'nethdd to extract spectral information. A texture measure
was proposed by Czarnecki [2]. A set of texture measures
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were used by Pace and Dyer in [3]. All these works were
done on side scan sonar, while our data were logged using
a multibeam echo sounder. In this study, we compare the
methods described in [l], [2] and [3] in addition to other
methods,

2 Data

The data used in this project were recorded from an
Simrad EM 1000 multibeam echo sounder. 95 kHz. It is
designed for operation in water depths from 5-800 meters.

For each ping the EM 1000 returns a stream ofbackscat-
ter values. These values are corrected according to angle of
incidence assuming flat bottom. In addition to the backseat—
ter data, the sonar also returns position information and
depth data. The number of samples in a ping varies with
the depth. A ping covers a sector of 150° or about 7.5 times
the depth, and the sampling rate is about 6—7 samples/meter.
Aping is divided into 60 beams, each covering 25° . In
the evaluation of features we have only used samples from
beam 4-23.

Due to a cruise in Oslofjorden, we got a large data set
, with a verbal description. By examination of the data in
combination with the verbal description of the data we se-
lected five regions which we assume represent five different
seabeds. In this stage of the project it is not important to
know exactly what seabed types the 5 regions represent so
we label them type 1, type 5. The classes may corre-
spond to rock, sand, silt, clay, and mud respectively, but we
stress that this is not confirmed. What is important, is that
the five regions represent five different seabeds. Each re-
gion is divided into seven adjacent areas. For each area we
have used three (overlapping) subareas, containing 2000,
4000, and 8000 backscauersamples respectively. (Table
l). .

For each feature we want to examine, we will use these
5 regions x '7 adjacent areas x 3 subareas = 105 subareas.

Mean value and standard deviation are calculated for
. groups of 7 adjacent areas of the same size. The mean

values and standard deviation for the areas containing 8000
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Region
16 150 32
44 30 48
44 35 40

35 60
15 120
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Table l: The size ofan area on the seafloor coveredby 8000

samples. The values for 2000 samples and 4000 samples

may be calculated by dividing along distance with 4 or 2

respectively.

samples are used to estimate the generalized Mahalanobis

distance[6]. To achieve good classification the classes must

beseparated in the feature space. The Mahalanobis distance

is used to give a numerical measure of the distancebetween

two classes iand j. The generalized Mahalanobis distance
Mi’j is:

Mr,j — V 62 + 72

'52 = (u.- -M;i)TE_1(#-' — M)

72 = 41 '2‘o _
gIEeliIEJ-li

l
E = 5(2,‘+2j)

where ti,- og p]- are mean vectors, 2,, 2,- are covariance
matrixes for class i and j. If the distance between two

classes is larger than 4.0, the probability of overlap between

the two classes are 2.5 % or less provided that the classes are

normal distributed. Experience shows that if the distance is

greater than 10.0, hardly any misclassification occurs even

if the classes are not normal distributed.

From a good feature we may also expect that the feature

is (more or less) invariant to the number of backscatter

samples used in the calculation.

3 Preprocessing

The sonar data contains a lot of artifact pings, beams or

samples. These artifact data must be removed, otherwise

it will result inwrongly computed features. All samples

in a ping are treated as a continuous sequence of samples.

That means that the last sample in one beam is the neigh-

bor of the first sample in the next beam, and this neighbor

relation is the same as for two subsequent samples in the

same beam. The‘ beams straight below the boat give an

artificially strong echo and are not used. For the EMlOOO

with 60 beams we have used beam 4 to beam 23. Each ping
is examined for bad samples. First, all samples with very

low or high backscatter value are rejected. We have re-

jected backscatter > [MB and < —50 dB. Isolated rejected

samples are replaced by the mean value of the predecessor

and the successor. Groups of rejected samples will split the

sample sequence into two subsequences. For each ping the

longest subsequence of accepted samples is used. If this
subsequence is shorter than a minlz‘mit the entire ping is

rejected.

4 Feature extraction

The backscatter values are denoted X = {1:1, _ . . , 2n},

and all features are tested for n = 2000,4000, and 8000.

The vector is formed by taking all samples from the first

ping in the area and concatenate these with all samples
from the second ping, and continue this concatenation until

the vector contains 11 samples. The advantage of this is

that all algorithms have an input of vector of length n and

is independent of the number of pings used to build the

vector. The disadvantage is the fact that sample a.- and

n+1 are either neighbors or are the last/first sample in two

subsequent pings. The latter may give rise to discontinuos

jumps in the data if 2,- and n+1 represent different seabed

types. However, since the ratio “not neighbor/neighbor”

is max l00/8000 = 1.25%, this influence on the result is
small.

The features are divided into four categories, features
based on the backscatter strength, features based on the

backscatter probability density function, features based on

the spectral distribution, and features based on texture.

'1': Backseatter strength

The most obvious feature to use is the mean value of-the

backscatter values.

‘ 1 u

mean = — El;
11 ,

I=l

The backscatter values fluctuate a lot and it is lcnown
that the mean value is sensitive to theexistence of a few
unusually large or small values. Order statistics is a set of

methods which is usually more robust thanclassical statis—

tics. A common method for summarizing the distribution
of a random ‘variable is by giving some selected quqrttiles
of the random variable. The term "quantile" is not as well

known as the terms “median”, “quartile”, “decile”, and

“percentile”, yet these latter terms are popular names given

to particular quantiles. The median of a random variable,
for example, is the number the random variable will exceed
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with probability 0.5 or less and will be smaller than with
probability 0.5 or less. This definition may be extended as
follows. '

The number Q, for a given value of p between 0 and l, is
called the pth quantile of the vector X, if P(:r.- < Q?) 5 p
and P(a:.- > 0,) <= 1 — p. If more than one number
satisfies the definition of the pth quantile, we will avoid
confusion by adopting the convention that 0,, equals the
average of all numbers that satisfy the definition.

The median is the 0.5 quantile, the third decile is the
0.3 quantile, the upper and lower quartiles are the 0.75 and
0.25 quantiles respectively, and the sixty-third percentile is
the 0.63 quantile.

For a small area of the seabed all raw backseatter data in-
side the area were sorted and the 0.1 , 0.2, . . . , 0.9 quantiles
were extracted.

4.2 Backseatter probability density function

The probability density function (PDF) of the raw
backscatter measurements has been shown to be sensitive
to changes in the roughness of the seabed.

In addition to locating the center of the PDF, described
in the previous section, it is useful to measure the extent
of variation around the center. A common used measure is
the standard deviation. ,

stden = '

 

Another measure of spread is the mean deviation:

’ ... v ' l. n _ .

vmeandev :.—- | 1:.- — E]
n

‘ ‘Other measures useful in comparing shapes of PiDFs are
the k’th-order central moments:

. A . _ .

Mk'='s"‘ Eta,- —e)*, k = 3,4,5
i:l

So far we have‘only'c‘onsidered features which are not
based on any assumption on the shape of the PDF. If one

__assumes thatthe PDFis a normal density the mean and
.the standard deviation completely characterize the PDF.

‘ However.‘in many cases. the PDF seems to be asymmetric, '
contradicting the normal density assumption. A class of
asymmetric PDFs is the gamma family. The PDF is given
by I ,
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where r and A are parameters. We have used two methods
for estimating the parameters. the method of moments and
the method of maximum likelihood[7].

The moment estimates, fMOM and 3M0)", satisfy the
equations: A

771(1"M0M,AM0M) = 5
11(1"M0M, jlMOM) = 2

where m(r, A) is the expectation and v(r, A) is the variance
of the gamma distribution. Because m(r, A) = § and
u(r, A) : f, [7] we get the r-moment:

—1a
m(r, A) = 8—2

and the A-moment:

i
v(r, A) _. 5—2

Using the method of maximum likelihood the estimates
AML and PM], will be those values of A and r which max-
imizes

Hffifi’fl)
{:1

Then we get r-maximum likelihood:

1 7|

rm] = ¢‘1(; 210g a:,- ~ logE)
t:

and A-maximum likelihood:

fM
I

Am]
 

Here ¢" denotes the inverse of 1/; where 1/; is the deriva-
V tive of the logarithm of the Gamma function.

4.3 Spectral distribution

The work on power spectrum methods[l] has been con-
centrated around exploring the nature of'the power spectra
and the features extracted from them.

The power spectrum is obtained by first applying a win-
dow function to the input data. performing a Fourier trans-

‘ form‘ on the windowed data and then taking the sum square
‘of the resulting amplitudes. The windowing is done by first
adjusting the data to have a zero mean value. then applying
the window function and then re-adjusting the data.

m = [F [am] l2.
where i is the ping number and $0) is the windowed

input data.
The power spectrum is then'averaged over It pings, giving

igign

fir) = 2 am.
i=1
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In [1], the “log-power spectrum” is defined as

PL(f) 5 log
Pm

 

+i)‘/io§(,4+1),

where Pm is the maximum value of 70') and A is a
constant multiplier. Finally, applying normalization, we

get:

I lNr

Pwttr)=PL(n//o PLifldf

From the normalized log-power spectrum, Pace & Gao

define three features, D1,, Dy2 and D1,. These parameters

have been modified somewhat compared to the descrip-

tion given in [1]. In our version data from several pings

are, merged together intoa long array. From this array,

segments of64 elements are Fourier transformed. The seg-

ments are overlapping such that the start elements are 0,

32, 64, and so on. The mean 'of all Fourier transforms are

calculated and the DI features are computed. We will call

these features the “Pace features”.

The zero frequency is not used in the computation.

15A I J'NY

DIE/1 Puma/ff P~L(f)df

l/ZIBA INYDP]! PNL(f)df//l mow
BA

lflit“ va'

Drz=:/l P~L(f)df//3 mow
I4JNY

The method was also used in connection with a smooth-

ing filter. The data were smoothed before the Fourier trans-

form were calculated. For smoothing of the input data

we have tried the median filter with different sizes and the

Crimmins filter [8] with different numbers of_iterations. _

Several values for the BA frequency were also tested.

The results can be seen in Figures l and 2. The two

figures show the power spectra for the five types of seabed

before and after smoothing. The DC value is by far larger

than the rest and is therefore omitted.

The smoothing operation obviously removes a lot of

noise in the higher frequencies and furthermore, judging

from the results (see below), it does not seem to remove

significant information.    

   

Bottom types 1 to 5, No filter applied
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Figure 1: Normalized power spectrum without filtering of

the'five seabed types

4.4 Texture

An important approach to'image analysis is to quantify

the texture content [9][lO}[l 1]. Although no formal defi-

nition of texture exists, we intuitively view this descriptor

as providing ameasure of properties such as smoothness.

roughness, coarseness, and regularity. Most surfaces in

nature are not smooth. The texture of the material corre-

sponds to the surface of the material and may therefore be
used to identify structures. In sonar images the variation

in reflectivity may correspond to structures on the seabed.

The three principal approaches used in image processing to

describe the texture of a region are spectral, statistical, and

structural. Spectral techniques are based on properties of

the Fourier spectrum and are used primarily to detect global

periodicity in theimages. StatiStical approaches yield char-

acterizations of textures as smooth, coarse, granularity, and

so on. Structural techniques are based on regular repeated

patterns in the images. For the sonar imaging these methods

may be applied to reflectivity data or depth data.

4.4.1 Gray-Level Ctr-Occurrence (GLCM)

Textural features can be calculated from the gray level spa-

tial co-occurrence matrix. If a ping is treated as a sequence

of reflectivity data, the co-occurrence Pd(i, j) of reflectiv-
ity i and j, is defined'as the number of pairs of samples

having reflectivity z' and j, respectively, and which are in a

fixed spatial relationship (I. The co-occurreuce matrix can

be normalized by dividing each entry by the sum of all en-

tries in the matrix giving pd(i, j). A lot af papers describe

statistics of the ctr—occurrence matrix[9][10][l 1]. Some of

the most important features are:
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Bottom types 1 to 5. Median 5 filtered
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Figure 2: Normalized power spectrum after median filter-
ing of the five seabed types

energy = 22100302
1' j

entropy = Z Zion, j) logtpa. j)
.7

. contrast: ZZp(i,j)(i — j)2

5 j

correlation = 22126100 — mo — Hj1/0-‘0j
1' 2

MM)homogenity = Z 1 + ‘1. _ j]
i j

moment = ZZp(i,j)iajb

J'

shade = ZZ p(i, j)(i + j — ,1. — in)?
I' 1'

prominence = ZZp(i,j)(i +j — fl; — p]- )4
I' J'

In addition to these features we have introduced a new
parameter

log—I Canaan's; Zp(t,j)(|i — jl) log(|i — j] + 1)
t ' j ' »

This feature hasralmost thesame properties as.Contrast, but
it is less affected by_noise.
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5 Evaluation of the features

The generalized Mahalanobis distance M1,,- was esti-
mated for all features and seabed types. In Table 2 we have
listed Mm, M2}, MM and M4; for some ofthe features.
Only the most interesting of the features described in the
previous sections are listed in the table.

  

Feature Ii/IEI—Mu M3,. M45 J
Mean 15.4 40.8 [—5.2 4.3
00.1 13.2 37.6 3.5 3.2
(20.5 13.5 40.6 6.7 4.5
QM 13.9 34.9 7.3 4,9
Q01; 15.1 32.8 7.8 5.2
Q03 15.7 27.6 6.5 5.3
sd.dev 3.3 6.1 1 4 0.7
3. order mom 2.2 5.6 3.0 3.2
4. order mom 3.1 6.4 3.1 3.4
5. order mom 2.8 6.6 3.1 3.2
PaceN(10) D]. 1.2 1.0 1.2 3.2
PaceN(10) Dy, 0.7 1.5 1.3 3.7
PaceN(10) DJr, 0.8 1.6 1.2 3.5
PaceC(10) D], 6.6 6.9 2.3 3.1
PaceC(10) Dh 6.1 6.7 2.6 3.3
PaceC(10) Dh 7.7 6.5 2.4 2.9
PaceM(5) DI, 6.7 5.5 2.5 3.8
PaceM(5) D], 3.3 4.3 3.5 4.1
PaceM(5) D}, 5.2 5.6 2.1 3.2
PaceM(10) D]. 8.4 8.2 2.2 3.7
PaceM(10) D,2 8.2 7.6 2.4 3.8
PaceM(10) DJ1 7.9 6.6 1.7 2.9
GLCM energy 3.1 3.9 1.3 0.8

      

GLCM cont 4.5 5.7 1.9 2.5
GLCM corr 2.9 1.2 2,4 1.6

 

Table 2: The generalized Mahalanobis distance M31‘, j for
some of the features calculated for 8000 samples. PaceX(n)
means Pace feature calculated after (N) no filtering, (C)
after crimmins filter, (M) after median filter, with BA-
frequency: n

All features based on backseatter strength are well suited
to discriminate the five seabed types. It is difficult to select
one of them as the best. Nevertheless we select the QM
quantileas the best feature. It discriminates all five classes
with less than 2.5 percent overlap. Another interesting fea- -
ture is the PaceM(5) D/, feature (Pace feature calculated
after filtering with a median filter, BA frequencey: 5).
The PaceM(5) D}. feature was selected in preference to
the other Pace features because of the ability to discrimi-
nate seabed type 4 and seabed type 5. Among the texture
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features, the GLCM cont seems” to be the best feature."

6 Correlation between features-

In the seabed classific‘atit'm we will used two or three

features. It is important that these features are uncorrelated.

Some of the features are highly correlated. This is obvious

since for example the mean value and the quantile features

all are measures of the backseatter strength in the signal.

A more interesting question is which correlation we will

find between the quantile features, the Pace features, and

the GLCM features.

In the computation of the correlations we have used

Spearman’s rank correlation[12]. In this test each number’s

rank is used rather than the value itself. The correlation

between a data set X.- and a data set Y. is given by:

"(112 — 1)/12 '

where R,- is the rankof X,- and S.- is the rank of Y,.

The result up is limited to -1 gr", 5 .l. r”, ,near

1 indicates a tendency _for the larger values of X to be

associated with the larger values of Y. Values near —1

indicate the opposite relationship. The association need

not be linear, only an increasing/decreasing relationship is

required. All combinations of pairs of features were tested.

If the correlation is calculated for data containing different

seabed types we may obtain different correlation than for

data covering the same seabed type. For this reason, we

have divided the total data set of over 4400.samples-into

400 groups of 11 samples for which the correlation was

calculated. The mean of the 400 r,,.‘s is presented in Table

3. From this table we read that the Pace-S-Dp2 feature is the

Pace feature less correlated with'the 0.8 quantile feature.

The result may also indicate that the GLCM-contrast '0r-

Sd.dev feature may be used as a third parameter.

r”, =

7' Conclusions .V

From the examination of the features we know that at

least 18 of the features examined may be used in seabed dis-

crimination (Table 3). A lot of these features are strongly

correlated. - Among the backseatter strength features we

found the 0.8 quantile and the mean to be the‘most inter-

esting. Among the features based on probability density

the sd.dev and 3.0rder moments seem interesting. Among
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Feature   
    
   

mean 0.9004 0.2879 -0.5305

0.5 quantile 0.8674

0.7 quantile 0.8958

0.8 quantile -

0.9 quantile 0.8665

sd.dev -0.3222

3. order mom -0.3903

4. order morn -0.4847

5. order mom 04874

PaceM(5) DI, 0.3910

PaceM(5) DJ, 0.3187

PaceM(5) DI, 0.3718
PaceM(10) Dy, 0.4224

PaceM(10) Dy, 0.4190
PaceMth) D], 0.4088
GLCM energy 0.1796

GLCM cont -0.4799

GLCM corr -0.0937

     

Table 3: The correlation beltiteen quaint-0.8, PaceM(5)

D11. GLCM contrast and the otherfeatures.

the spectral features PaceM(5) DI, is the best feature and

among the texture features only GLCM contrast and GLCM

correlation seems to be useful. If we should select 3 fea-

tures for seabed classification we_woul'd.select 0.8_quantile

as the first feature, the PaceM(5)- Dhas the second feature,

and either sd.dev, 3.0rder moment, or GLCM contrast as

a third feature. Besides the fact that their discrimination

ability are good, and they are not highly correlated fea-

tures, they may also represent different physical properties

from the seabed; If this is'true; we may gethuantitative

measurements of the physical features rather than merely

classifying the seabed to classes like rock, sand, silt, clay

and mud. ‘ -
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