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I. INTRODUCTION

The problem of the vibration of flexible suings with uniform characteristics has been
ueated by many investigators and tire results are well established. Vibration characteristics
of stiff suings are also quite well understood and the predicted mode frequencies are in
closed ayeement with observationsll]. In this paper, the vibration of nonuniform stiff
suings is considered.

In the late 19th century. LordRayleigh [2] described a theory for the vibration of strings,
showing that in the piano, the stiffness of the suings affects the restoring force to a
significant degree. He derived a formula to predict how the stiffness of apiano string can
cause it to vibrate at frequencies somewhat greater than those of the ideal string.

The more general theory for the stiff suing. often encountered in the literature. was
developed by Morse[3].- and by Shankland and Coleman [4]. They derived expressions for
the frequencies of a string of uniform diameter and density in free transverse vibration
between rigid supports. Shankland and Coltman predicted a progressive sharpening of the
partials as the mode number increases. the extent of the sharpening being dependent on
the ratio of the suing diameter to its length; the greater this ratio. the pester will be the
sharpening. Robert W. Young [5. 6. 7] and his colleagues found that the sharpening follows
approximately a square law with respect to mode number. They observed that the
depamtre from the harmonic series of the plain steel suing: was about the same in all the
pianos they tested and was consistently less in large pianos than in small ones. More
recently, many other investigators have studied the piano suing inharmonicity problem
with plain steel strings and overwon bass suingsIB].

All piano bass suings are characterised by a steel wire core wrapped with copper, or
sometimes iron. used no increase the suing‘s linear mass density. While the tight coiling
of the copper wire ensures close coupling to the core, the windings conuibute considerably
more to the increase in the suing's linear mass density titan to its bending stiffness Most
bass suings have a single winding of copper wire. and it is usually on] within the
lowest octave that double winding is used. A double-wound string consists o a bare steel
core wrapped with a small diameter copper wire, which is then overspun with a second
winding of larger diameter. A small pan of the steel core is left exposed near the end of
the suing, Thus only the outer winding is visible and the existence of the inner winding
is evident only from the small change in the diameter of the overall covering near the
ends.

A theoretical relationship for inharmoniciry that can be applied to wrapped strings was

derived by Harvey Fletcher [9]. He showed that the formula L=ttfill+8n2 gives values
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of the partial frequencies of the solid piano strings close to his observed values. where n
is the number of the partial. The constant B, the inharmonicity coefficient calculated from

the dimensions of the wire. is B = (1:142sz 1411031). where fa is the fundamental
frequency, Q the Young's modulus of elasticity, S the area of the cross section, I the
length. a the linear density, and r the radius of gyration of the string. Fletcher had the
idea of applying this to overwon suings by taking a to be the linear density of the
overwound suing (core and windings). He suggested that the value of linear density of

the overwound string would be

rt1 1 7: rr’ 1= ___D + __ _0 Pa.16 (A4 9.1)4

for a steel core of diameter d with volume massdensity p, and copper winding with

volume mass density p, and wire diameter D.

Fletcher‘s formula has previously been applied [1] to predict the inhat'monicity of suings
on a 2.5 m Broadwood grand piano (1871) in the Physics Deparunent at the University of

Edinburgh. It was found that for the full range of plain solid suings the predicted and
observed inharmonicities were in close agreement However for the overwound suings the
observed inharrnonicity was higher than predicted, taking the suing as being uniform over
its length. The deviation was up to some 30% for the most heavily overwound, A0
suing. This has led us to investigate the effect of string nonuniformity, caused by the
windings not continuing over the entire suing length.

Some discussions about this problem have appeared over the last few years by Levinson
[10]. Sakata and Sakata [11], and Gottlieb[12]. Levinson studied the free vibration of a
suing with stepped mass density and derived an exact equation for calculating the natural
frequency. but did not obtain any numerical solutions. Sakata and Sakata derived an exact
frequency equation for a suing with stepped mass density and proposed an approximate
formula for estimating the fundamental natural frequency of the suing. In Gottlieb's work,
the three-part suing, with two step discontinuities in density. was investigated in some
detail for both fixed and free end conditions. Aspects of the "four-part" and "m-part"
suing problems were also discussed. However, these derivations have not taken into
account the stiffness of the stepped string.

2. THEORETICAL CONSIDERATION

In this section we derive an expression for the frequencies of vibration of a stepped stiff
suing. Consider the vibration of an M-part suing fixed at its ends. The (displacement)
finite element {emulation of the one-dimensional fomlwrder differential equation [2] is

I I

rfl’i-(Qsfi) —w"-=p.S-a—WL i = 1. 2, 3,....., m (1)
‘3‘:
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where w‘ is the (small) transverse displacement of the suing originally lying on the :-

axt's, t is the time, T is the Tension. ,S'iis the area of cross-section, Ki its radius of

gyration. pl. and Q are the density and modulus of elasticity of the material for

a. Sxisa‘ where X; is the length of the i—th segment of the suing. 00:0 and
I-l

a_=2a;=a , the total length of the suing.

The ends of the suing are consida-ed to be clamped. Then the boundary conditions are

w,(0)= w_(a)= 0

MW) = wL(a) = 0 (2)

and the junction conditions

“’i(ai) = wlo|(ai)

W.-’(a.) = "411(4)

(aséthaa = (QSr’)i.1w;,(ai)
T.~w.-’(a.-) + (Qsir‘thfai) = T.-.,w.-’.1(nanosfitlwmai). (3)

The boundary conditions are those for simple supports and the junction conditions express
the continuity of the displacement. slope. moment. and shear at the junctions of the M
segments of the stiff suing;

In the case of a two segment stiff string. the normal mode frequencies can be found from
the equation (afterwards. called the frequency equation):

(95x1) #1
(-—"-"'+1)(.u Ianh )+fl W01 ))_(stz)2 p; 11 (1‘11": 2! Hal

Sr’ =xtfififltmnmwnwwn unclean)
2

4%59—umu mwnanwu manna.»
2 1|

2

xtégg—Qtfgl—nmumwnatHua mnwna,»=o <4)
1 n

Equation (4) contains four panmeters yummuzvun which are functions of the
frequency, f.
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, T p T 1
= _l_ 1 2 3—1— -1‘__l_ 2 5

“" («now») +( ’50 (0?), J" ) new») ( )

:j.k= 1.2.

In the case of the stepped stiff string it is considered that its tension and stiffness are

constant along its length due to the core. lts frequency equan‘on is

(4+1)(&:L+ mhmfluufluflafil... 1)

#22 P21 Flt an‘ttat) [‘21 “11011240
2

_(_F%L_1)(E;L_1)(&Lfln_%l+1,(&z%fll+l} =0
[‘21 I122 #22 Molnar) #21 “"0112” (6)

The allowed frequencies. f,l : (n= 1, 2, 3. 4. ....) on be found fi‘om equation (5)&(6).

3. NUMERICAL RESULT

Numerical calculations have been undertaken to compute theoretical mode frequencies for

strings on the Edinburgh Broadwood grand piano. Only the single overwound strings in

the lowest octave. sounding A0 to A] were considered; results here are presented for two

of the strings. Rho and Dbl.

Figl shows the notation used for defining the parameters of the overwound string. This

was clamped at both ends and the linear density was calculated using the method of WT

<——>l<—————->
at A1

Fig.1 the single overwound suing.
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The l-st segment is the bane string and the Z—nd segment has both the steel cone and the

wrapped copper wire. Tablel shows the dimensions for the two strings Rho and Dbl.

Table l The dimmsions of the strings. aw Ind Dbl

 

The mode frequencies were found numerically from Equations & 6 by applying Newton's

method; this was programmed on an Apple Macintosh computer using the Mathematica

package. The results of these computations are shown in Tablesll and III. Figuresll and

III present these results graphically.

Tnble I! Thedepmnueofthemnnalfiequmdeshmnmehmmflcsenesroxnwmgwhh

Fletcher: funnula. Observation and Theory (Eqs. 5 a 6).

LCDOO
2.0005
30016
4.0037
511172
6.0125
7.0198
8.0296
9.042l

l0.0578
l l.0769
[2.0997

1
2
3
4

5
6
7
8
9
10
ll
12
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7.0190
8.0783
9.0403
10.0552
1 l.0734
12.0953
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Table III The depanun of me nanu-ai frequencies from the harmonic saies for Dbl suing with

Fluchcr‘s fonnuln. Observation and Theory (Eqs. 5 &6).
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4. INHARMONICITY MEASUREMENTS

In order to validate the theory developed in section 2 of this paper. experiments were
conducted to measure the inharrnonicity of the single overwound strings on the Edinburgh
Broadwood. The key ofthe note under study was held down with a weight in order to
retract the damper and allow the string to vibrate freely; on this piano the dampers are
below the strings. The string was then plucked with the finger at a siu'on close to the
end and the sound was recorded at a point near to the centre a the string using a
microphone mounted a short distance above. The acoustic signal was captured digitally
using a Barry Box (a unit specially designed for collecting sound samples) and was
analysed on a BBC B computer using an FFI' routine developed at Edinburghm. This
program generates a high resolution spectrum and accurately locates the peaks. from which
the inharmonicity of any particular mode can be determined.

The measured peak frequencies for the first twelve modes for string BbOare shown in
Table ll and are displayed graphically in Figure 11. These can be compared with the
theoretical frequency values. together with the corresponding frequencies calculated from
Fletcher's formula. Corresponding results for the note Dbl are given in Table III and
Figure [I]. It is seen that stepped stiff string theory gives a very good match. the error in
the twelfth mode being only 5%. The error using Fletcher‘s theory is approximately six
times as great.

Similar results have been measured for the other single overwound strings and the results
show generally the same trends.
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5. CONCLUSIONS

It is evident from the results that the theory presented here gives a better fit to measured
inhannonicities titan Fletcher's analysis for a uniform string. Apparently the stepped
geometry of the overwound strings is significant. However. our predictions still
underestimate the inharmonicity by about 5% in the twelfth mode. This could be due to a
number of factors. The winding itself may tend to increase the stiffness of the string i.e.
the stiffness of a length of overwound string is slightly greater than the stiffness of the
core by itself. The flexibility of the supports may also be important. Neither of these
factors are included in the analysis.

In order to study the problem further. a purpose-designed monocth has now been
constructed at Edinburgh. With this it will be possible to measure the tension precisely
and to vary the support rigidity.
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