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ABSTRACT

The effects of the dynamics of an acoustic system upon the conventional LMS

noise canceller are introduced by considering the control of a 2nd order

network. Simulating the control of sinusoidal disturbance shows that a

stability limit exists which is explained in terms of an analytical model of

the adaptive system.

INTRODUCTION

"Adaptive Noise Cancelling" is a technique for the removal of additive noise

from a signal. Early applications and the theoretical background of the

technique were developed within the electronic engineering discipline [1]-

This signal conditioning technique can be easily recast into a noise control

problem in which the adaptive canceller attempts to control the behaviour of

some system under control in a "Model/Reference" sense. The analysis of the

Hidrow Hoff LHS noise canceller has been widely reported in the context of

electrical cancellation but. unfortunately, many potential applications of

adaptive noise cancelling involve the control of complex dynamic systems. The
performance of conventional adaptive cancelling techniques in attempting to

control such systems is the subject of this paper.

ADAPTIVE CONTROL OF ACOUSTIC SYSTEMS

when adaptive techniques are applied to the control of distributed parameter

systems. the duration of their impulse response becomes important. This

impulse response has two important components. Firstly. as a result of

transmission times between transducers, there are pure delay factors to be

included in the description of the controlled system. These almost inevitably

lead to a non-minimum phase structure. Secondly, if the distributed parameter

system is bounded. it will display resonant/satiresonant characteristics which

will influence the behaviour of the controller. Both these effects radically

influence the convergence and stability criteria for an adaptive cancelling

system. The behaviour of an adaptive canceller, controlling a second order

system is reported, both by simulation and theoretical analysis, below. This

yields general results which can be readily extended to predict the performance

of noise cancellers controlling Complex acoustic systems.

THE ADAPTIVE CANCELLING SYSTEM WITH A FILTER
IN THE CONTROL LOOP

The concept of an adaptive canceller controlling the response of a resonant

system can best be modelled in the conventional structural notation of Widrow
[1] by including the system as a filter in the "control loop" [2] of the
cancellerI see fig. 1- In this position it is intuitively seen that:
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I) The system under control, C. may influence the behaviour of the cancelling

system by introducing memory into the "error" path

2) signals uncorrelated with the reference input are not influenced by the

cancelling system.

The signal present at the summing Junction in the absence of the adaptive

filter is conventionally referred to as the "primary'l signal and in this case

is composed of the "desired" input and the "signal" input which are perfectly

correlated and uncorrelated respectively withthe reference input.

The system of fig. 1 serves as the basis for an experimental computer
simulation which is reported below.

ADAPTIVE CONTROL OF A 2ND ORDER NETWORK - SIMULATION

The system of fig 1 was implemented as a computer simulation in which all

signals could be examined and recorded. The filter chosen was a second order
resonator with natural frequency f0 = 1/”. where T is the sampling period and

damping ratio E = .2. The parameters were obtained by the impulse invariant
method. such that the transfer function was:

u(z) = 1.552'1 (1) ‘
1-o.oa7z‘l+o.sasz'2

The adaptive filter was a standard LMS controlled 11th order FIR device;, the

unusua1.choice of ":11 is discussed later. The adaption parameter was chosen
as u = .02, and the filter was excited by the following reference and desired
inputs and initial conditions:

x(k) = cos(2nfirk/T) d(k) = U(k)x(k'2)
2

where U(k) is the unit step in.

No 'signal' input was used, and the adaptive filter weights were

initialised to zero.

The reference normalized frequency, fr, was an experimental variable.

The observed error response of the simulated system to the above inputs. is

shown below. forvarious reference normalized frequencies as figs. 2. The
system is seen to be stable and convergent. successfully cancelling the

periodic noise applied to the system under control up to a reference frequency
of N 0.3. At higher frequencies, the system is unstable.

The results of the computer simulation show that the presence of a simple

linear filter in the control loop of an adaptive cancelling system can
radically influence it's performance; this effect can be fully understood and

predicted by thefollowing analysis-
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THE ADAPTIVE CANCELLING SYSTEM WITH A FILTER IN THE
CONTROL LOOP - THEORETICAL ANALISIS

In the seminal paper by Clever [3] it was demonstrated that an adaptiva noise
canceller with a periodic reference signal implemented a fited linear comb
filter for certain reference frequencies. This approach is extended in this
section to include a fixed linear filter in the control loop.

The response of the adaptive filter can be written as [M]
k-l

y(k) = zu : e(i)X:Xk_i (2)
i=0

where = x(k)
xk x(k-1)

{rm-n+1)
and substituting for e(i) in fig. 1:

2 k-l Q-l T (3)
y(k) = uifio jiocj(di_j-yi_j)xkxk-i

where cd is the Jth element of the ch order impulse response of the error
filter. For certain reference frequencies [3,5] the reference autocovariance
estimates become time invariant. At these frequencies. Z transforming 3
and rearranging gives a fixed linear transfer function between the observed
error and the desired input:

 

3(2) = 1-22-1coemETez'2

'1 '2 ‘1 '2 (A)D(z) _l-Zz cosmoT+z +uN(z cosmoT-z )C(z)

exactly describing the behaviour of the adaptive system in the presence of the
filter

ADAPTIVE CONTROL OF A 2ND ORDER NETWORK
- THEORETICAL ANALYSIS

Given eqn 3 it is possible to predict the behaviour of the system simulated
above. With the 11th order adaptive filter used in the simulation the
reference autocovarianoe is not exactly time invariant at those frequencies
used-in the simulation. houever, the theory used to develop eqn. u remains
approximately true [3]-

The convergence rate of the adaptive system with an error filter will be
controlled only by the denominator of eqn. u; the zeros effect the frequency
response but not stability. Thus finding the roots of the denominator of eqn.
u will describe the convergence rate of the system.

Proc.l.O.A. v'on Penz (1935) as
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Substituting the parameters of eqn. I for C(z) in eqn. H and solving for the

denominator roots numerically gives the following results. The pole locations

for a normalised reference frequency of fp/fo = 1 are shown plotted as Fig 3.

The pole pair outside the unit circle near the imaginary axis dominate the

behaviour of the system.

The modulus of the dominant pole pair is shown plotted against reference

frequency as fig. H. The system is seen to be stable up to reference

frequencies of N .3, after which the dominant poles migrate outside the unit

circle causing instability. The time constant of the instability is shortest

at f = .5 - .6 after which it lengthens slightly. This effect is clearly seen

in the results of the computer simulation (figs 2).

Note that the extreme frequencies of fig 3 (shown dotted) are coarser

approximations than the centre of the plot, as the reference autocovariance

becomes more time-variant at these frequencies [5].

The prediction of the performance of the noise cancelling system based on eqn H

is seen to follow closely the results obtained from the computer simulation.

To further examine the effects of the error filter several other filter designs

were investigated having the same natural frequency, 1/HT, but with damping

ratios : = .1. .2, .3, .h, .5 (see fig 5). Substituting the appropriate c(z)'s

in eqn H and solving for the poles gives the required prediction of stability

and convergence. The moduli of the dominant pole pairs are shown as fig. 6.

An increase in damping ratio is seen from fig 6 to generally reduce the radial

position of the dominant pole pair, tending to make the system "more stable".

This effect is most clearly seen at the natural frequency of the error filter,

presumably due to the increased damping controlling the magnitude of the

resonant effect.

The frequency at which the system becomes unstable appears to increase with

increasing damping towards a limiting value. This is an effect caused by the

phase shift across the error filter; the asymptote corresponds to

approximately 70° of phase lag. This phase condition can be found from

examining the effects of a pure delay element in the error path, using a

similar analysis to that discussed above (i.e. substituting C(z)=2'1 in eqn n).

For the case of a highly damped error filter, the stability criteria is

governed by this phase asymptote; the filter will become unstable when the

error filter produces 70° ofphase lag. in more lightly damped situations the

onset of instability is governed by a combination of the phase shift across the

filter and the effects of the resonance.

For any damping ratio. given that the 70° phase condition is obeyed, it is
possible to reduce the adaption parameter p to such avalue as to ensure

stability; this effect of constraining the adaption of the filter so as to

remove the influence of the dynamics of the system under control is then

analogous to the "quasi static" approach to adaptive noise control in

complicated systems.
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CONCLUDING REMARKS

It has been demonstrated by simulation. supported by a theoretical discussion,
that the performance of an adaptive noise cancelling system controlling a
resonant system will be significantly different from that expected in a similar
signal conditioning task. The pure phase delay across the system under
control imposes a maximum cancelling frequency in highly damped systems whereas
a lightly damped application is stable only to a lower reference frequency.

The multiresonant and mixed phase characteristics of typical acoustic systems
may both be discussed in terms of such a simple error filter, explaining one of
the difficulties or applying conventional adaptive cancelling strategies to
acoustic noise control Pl‘OblEmS.

[11

[2]

[3]

E“]

[5]
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fig. 1 The adaptive noise canceller with an error filter.
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fig. 2 Response of the LHS noise cancellet + 2nd. order error filter

to a sinusoidal input.
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fig. 3
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fig. 5 Error filter frequency response: (to-.5, :-.1, .2, .3, .4, .5)
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fig. 6 Modulus of dominant pole pair.

(Second order error filter. f0 = INT)
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