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ABSTRACT

The affects of the dynamics of an acoustic system upon the conventiopal LMS
noise canceller are jntroduced by considering the control of a 2nd order
network. Simulating the control of sinusolidal disturbance shows that a
stability limit exists which (s explained in terms of an analytical model of
the adaptive system.

INTRODUCTION

wpdaptive Noise Cancelling” is a technique for the removal of additive noise
from a signal. Early applications and the theoretical background of the
technique were developed within the electronic engineering disecipline [1].
This aignal conditioning technique can be easily recast into a noise control
problem in which the adaptive canceller attempts to control the behaviour of
some system under control in a "Model/Referencem sense. The analysis of the
Widrow Hoff LMS nolse canceller has been widely reported in the context of
glectrical cancellation but, unfortunately, many potential applications of
adaptive noise cancelling involve the control of complex dynamic systems. The
performance of conventional adaptive cancelling techniques in attempting to
control such aystems is the subjeet of this paper.

ADAPTIVE CONTROL OF ACQUSTIC SYSTEMS

When adaptive techniques ars applied to the control of distributed parameter
gystems, the duration of their impulse response becomes important. This
impulse response has two important ccmponents. Firstly, as a raesult of
transmission timea between transducers, there are pure delay factors to be
{nciuded in the description of the controlled system. These almost inevitably
lead to a non-minimum phase structure. Secondly, if the distributed parameter
system is bounded, it will display regonant/antiresonant characteristics which
will influence the behaviour of the controller. Both these effects radiecally
influence the convergence and stability eriteria for an adaptive cancelling
aystem. The behaviour of an adaptive canceller, controlling a second order
system i3 reported, both by simulation and theoretleal analysis, below. This
yields general results which can be readily extended to predict the performance
of nolse cancellers controlling complex acoustioc systems.

THE ADAPTIVE CANCELLING SYSTEM WITH A FILTER
IN THE CONTROL LOCOP

The concept of an adaptive canceller controlling the response of a resonant
system can beat be modelled in the conventional structural notation of Widrow
[1] by including the system as a filter in the "control loop" [2] of the
canceller, see fig. 1. In this position it is intultively seen that:
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1) The system under control, C, may influence the behaviour of the cancelling
system by introducing memory into the "error™ path

2) 5ignals uncorrelated with the reference input are not influenced by the
cancelling system.

The signal present at the summing junction in the absence of the adaptive
filter 13 conventionally refarred to as the "primary"™ signal and in this case
is composed of the "desired” input and the ™signal" input which are perfectly
correlated and uncorrelated respectively with the reference lnput.

The system of fig. 1 serves as the basis for an experimental computer
simulation which i3 reported below.

ADAPTIVE CONTROL OF A 2ND ORDER NETWORK - SIMULATION

The system of {ig 1 was loplemented as a computer simulation in which all
signals could be exam{ined and recorded. The filter chosen was a sacond order
resonator with natural frequency f, = 1/4T, where T is the sampling period and
damping ratio T = .2. The parameters were obtalned by the impulse invarilant
method, such that the transfer function was:

§(z) = 1.462 ¢ 1) '

1-0.0472" 140, 53322

The adaptive filter was a atandard LMS controlled 11th order FIR device;. the
unusual .choice of N=11 is discussed later. The adaption parameter was chgsen
as p = .02, and the fllter was excited by the following reference and desired
inputa and initial conditions:

x{k) = cos(ZﬂﬁrkIT) d{k) = U(k}x(k-2)
-2

where U{k) is the unit step fn.

No 'signal' input was used, and the adaptive filter weights were
initialised to zero.

The reference normalized frequeney, f., was an experimental variable.

The observed error response of the simulated system to the above inputs. is
ghown below, for various reference normalized frequencies as figs. 2. The
gystem 1s seen to be stable and convergent, successfully cancelling the
periodio noise applied to the system under control up to a reference frequency
of ¥ 0.3. At higher frequencies, the system is unstable.

The results of the computer simulation show that the presence of a aimpls
linear filter in the control loop of an adaptive cancelling system can
radically influence it'a performance; this effect can be fully understcod and
predicted by the following analysis.
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THE ADAPTIVE CANCELLING SYSTEM WITH A FILTER IN THE
CONTROL LOOP - THEDRETICAL ANALYSIS

In the seminal paper by Glover [3] it was demonstrated that an adaptive noise
canceller with a periodic refersnce signal implementsd a fixed linear comb
filter for certain reference frequencies. This approach is extended in this
section to include a fixed linear filter in the sontrol loop.

The responge of the adaptive filter can be written as [U]
k-1

y( = 20 T e(DXX . @)
i=0
where = x(k)
xk x({k-1)
;(k—N+1)
and subatituting for e(i) in fig. 1:

2 X 3)

7 = bE jﬁc,“j 377 5m %81

where €j is the jth element of the Qth order impulse response of the error
filter. For certain reference frequencies [3,5] the reference autocovariance
ostimates become time invariant, At these frequencies, 2 transforming 3
and rearranging gives a fixed linear transfer funetion between the observed
error and the desired input:

E(z) = I-Zz-lcoam0T+z'2

4)

D{z) _1—22_1cosmoT+z-2+uN(z-lcosmoT-zhz)C(z)

exactly describing the behaviour of the adaptive system in the presence of the
filter

ADAPTIVE CONTROL OF A 2ND ORDER NETWORK
- THEQORETICAL ANALYSIS

Given eqn 4 it is possible to prediat the behaviour of the system simulated
above. With the 1ith order adaptive filter used in the gimutation the
reference autocovariance is not exactly time invariant at those frequencies
used- in the simulation, however, the theory used to develop eqn. 4 remains
approximately true [3].

The convergence rate of the adaptive system with an error filter will be
controlled enly by the denominator of eqn. 4; the zeros effact the frequency
response but not stability. Thus finding the roots of the denominator of eqn.
4 will describe the convergence rate of the system.
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Substituting the parameters of eqn. 1 for C{z) in eqn. 4 and solving for the
denominator roots numerically gives the following results. The pole lecations
for a normalised reference frequency of [p/fo = 1 are shown plotted as Fig 3.
The pole pair outside the unit circle near the imaginary axis dominate the
behaviour of the system.

The modulus of the dominant pele pair is shown plotted against reference
frequency as fig. 4. The system is seen to be stable up to reference
frequencies of v .3, after which the dominant poles migrate cutside the unit
¢irele causing instability. The time constant of the instability is shortest
at f.= .5 = .0 after which i1t lengthens slightly. This effect i3 clearly seen
in tEe results of the computer simulation (figs 2).

Note that the extreme frequencies of fig 4 (shown dotted) are coarser
approximations than the centre of the plot, as the reference autocovariance
becomes more time-variant at these frequencies [5].

The prediction of the performance of the nolse cancelling system based on eqn 4
i3 seen to follow ¢losely the results obtained from the computer simulation.

To further examine the effects of the error filter several other filter designs
were investigated having the same natural frequency, 1/4T, but with damping
ratios ¢ = .1, .2, .3, .4, .5 (see fig 5). Substituting the appropriate C(z)'s
in eqn 4 and solving for the poles gives the required prediction of stability
and convergence. The moduli of the dominant pole pairs are shown as fig. 6.

An {ncrease in damping ratio ia aseen from fig 6 to generally reduce the radial
position of the dominant pole pair, tending to make the system "more stable".
This affect is most clearly seen at the patural frequency of the error filter,
presumably due to the increased damping controlling the magnitude of the
regonant effect.

The frequency at which the system becomes unstable appears te increase with
increasing damping towards a limiting value. This is an effect caused by the
phase shift across the error filter; the asymptote corresponds te
approximately 70?2 of phase lag. This phase condition can be found from
examining the effects of a pure delay element in the error path, uaing a
similar analysis to that discussed above (i.e. substituting C(z}=z"! in eqn 4}.
For the case of a highly damped error filter, the stability criteria {s
governed by this phase asymptote; the filtar will become unstable when the
error filter produces 70% of phase lag. In more lightly damped situations the
onset of instability is governed by a combination of the phase shift acroas the
filter and the effects of the resonance.

For any damping ratio, given that the T0° phase conditicn is obeyed, it is
posaible to reduce the adaption parameter § to such a value as to ensure
stability; this effect of constraining the adaption of the filter so as teo
remova the influence of the dynamics of the aystem under control is then
analogous Lo the "quasi static! approach to adaptive nolse control in
complleated systems.
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CONCLUDING REMARKS

It has been demonstrated by simulation, supported by a theoretical discussion,
that the performance of an adaptive noise cancelling system controlling a
raegonant system will be significantly different from that expected in a similar
signal conditioning task. The pure phase delay across the system under
control imposes a maximum cancelling frequency in highly damped systems whereas
a lightly damped application is stable only Lo a lower reference frequency.

The multirescnant and mixed phase characteristics of typical acoustic systems
may both be discussed in terms of such a simple error filter, explaining cne of
the difficulties of applying conventional adaptive cancelling strategies to
acoustic nolse control problems.
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fig. 1 The adaptive noise canceller with an error filter.
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fig. 2 Responmee of the IMS noise canceller + 2nd. order errvor filter

to a sinusoidal input.
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fig., 6 Modulus of dominant pole pair.
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