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In gas turbine combustors, thermoacoustic instabilities arise when the flame’s unsteady heat release cou-
ples to the combustor acoustics and the resulting feedback loop transfers more energy to the acoustic field
than it is dissipated by the damping mechanisms. One of these damping mechanisms are the viscous losses
within the acoustic boundary layer. This paper presents a model that describes these losses, which can be
implemented as a boundary condition in the acoustic governing equations, capturing the dampening effect
of the acoustic viscous boundary layer without numerically resolving it. This allows to determine damping
rates of generic three-dimensional geometries and mode shapes, including the transverse modes that appear
beyond the cut-off frequency. The derived model is tested for the first transverse mode against damping rates
measured in an experimental test rig. For that purpose, the eigenvalue problem of the Helmholtz equation
–including the boundary layer boundary condition– is numerically solved and the damping rate is obtained
from the imaginary part of the complex eigenfrequency.
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1. Introduction

Current gas turbine combustors, which are based on lean premixed technologies, tend to develop thermoacoustic
instabilities that can restrict their operational range and increase pollutant emissions [1]. According to the
extended Rayleigh criterion [2], an instability arises if driving –i.e. constructive coupling between the flame’s
unsteady heat release and the chamber acoustics– exceeds the acoustic damping, e.g. losses through open
boundaries, interactions between acoustics and mean flow, energy dissipation in the boundary layer. Therefore,
in order to computationally predict whether a combustor becomes unstable, an accurate description of both
driving and damping is needed. Although over the past decades advances have been made in the comprehension
and prediction of low-frequency pulsations, the high frequency range remains not completely understood [3].
Direct numerical simulation of thermoacoustic instabilities is far beyond current computing power, and even
though transient CFD simulations like LES are possible, their associated high computational cost prevents using
them as a dynamic design tool. Taking advantage of the scale disparity of the acoustic motion compared to the
steady mean flow, more time-efficient approaches use the Linearized Euler (LEE) or Linearized Navier-Stokes
equations (LNSE) in frequency domain to describe the linear stability limits of gas turbine combustors [4]. In
these methods, the linear driving potential introduced by the flame can be described by means of Flame Transfer
Functions (FTF) [5], which relate the flame’s unsteady heat release to acoustic fluid variables. Regarding
damping, LEE and LNSE intrinsically capture the losses arising from interactions between the acoustic field
and the mean flow. Furthermore, as long as one is working in frequency domain, open boundaries can be
cast into impedances or reflection coefficients, which can be easily implemented as boundary conditions in the
equations. The acoustic boundary layer is usually neglected in such acoustic approaches as it has a negligible
effect on the acoustic propagation [6] –i.e. mode shapes. However it is known from studies carried out on
tubes that the boundary layer may have a non-negligible effect on the damping rates. For example in [7], the
author derives an analytic formula to assess the damping rate due to the boundary layer for one-dimensional
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modes within a hard-walled tube1. In that formula, for a given thermodynamic state of a gas, the damping rate
grows linearly with the surface-to-volume ratio and proportionally to the square root of the frequency. In other
words, for flat combustors –i.e. high surface-to-volume ratio– and/or high frequencies the acoustic losses due
to the boundary layer can play a role on the damping rate. The damping due to the acoustic boundary layer can
be allocated to thermal and to viscous effects, i.e. thermal and viscous acoustic boundary layers. The scalar
character of the temperature allows to model the diffusion within the thermal boundary layer as an impedance
[8]. However, the velocity is a vector for the transverse modes, therefore its diffusion depends on its local
direction precluding to cast the viscous effects into an impedance.
This paper introduces a model that takes into account the acoustic viscous boundary layer, without directly
resolving it, and which can be implemented as a boundary condition in the acoustic governing equations. The
main novelty of the model hereby presented is that it allows to assess the damping rates of generic three-
dimensional mode shapes and geometries, and thus it is suitable for studying high frequency thermoacoustic
instabilities.
This work is structured as follows. First, theoretical background is presented, therein a one-dimensional model
for the boundary layer losses is derived and subsequently extended to three-dimensional cases. Second, a
validation of both models is carried out. The one-dimensional model is compared to analytic results and the
three-dimensional model is validated against experimental measurements. Conclusions and next steps are sum-
marized in the last section.

2. Theoretical Background

In this section, the viscous boundary layer losses model is presented. Firstly, a boundary condition for one-
dimensional (1D) acoustics is derived. In that regard, the linearized Navier-Stokes equations are solved un-
der suitable assumptions to obtain such a boundary condition. Secondly, the 1D model is extended to three-
dimensions (3D). Specifically, it is proved that the 1D model can be applied to 3D in local curvilinear coordi-
nates. Therefore, in a last step, transforming the 1D model from curvilinear to cartesian coordinates, the generic
3D boundary condition is obtained.

2.1 Derivation of a One-Dimensional Model for Viscous Losses within the Boundary Layer

To describe the acoustics in engineering applications such as gas turbines, the Navier-Stokes equations are
simplified under the assumption of small harmonic acoustic oscillations of angular frequency ω, yielding the
linearized Navier-Stokes equations in frequency domain [9]:

iωρ̂+∇ · (ρ̂u0) +∇ · (ρ0û) = 0, (1)

iωρ0û+ û · ∇u0 + u0 · ∇û = −∇p̂+ µ∇2û, (2)

iωp̂+ u0 · ∇p̂+ û · ∇p0 + γ (p0∇ · û + p̂∇ · u0) = −∇ · q̂. (3)

Density, pressure and the vector velocity are denoted by ρ, p and u, respectively. The subscript (·)0 stands
for the mean flow variables, while the hat (̂·) designates complex amplitudes of acoustic variables. The heat
capacity ratio and the dynamic viscosity are designated by γ and µ, respectively. Finally, the heat flux is denoted
by q̂. In the acoustic motion near to solid boundaries, as in the classical boundary layer theory, two zones can be
distinguished: one far from the solid boundaries, where there is an ideal acoustic flow with negligible viscous
effects, and another close to the solid boundaries where viscosity effects come into play. The latter is the
so-called acoustic boundary layer [10].
The velocity profile of a two-dimensional acoustic boundary layer is depicted in Fig. 1. Note that outside that
boundary layer the motion is simply one-dimensional ideal flow, whilst within the boundary layer the velocity
decreases until fulfilling the no-slip condition at the wall. In order to obtain the expression for the acoustic
quantities within the boundary layer, some assumptions are made on Eqs. (1)-(3):

i) The mean flow is neglected2, i.e. u0 = 0
ii) No heat flux through the wall is considered, i.e. q̂ = 0, only dissipation due viscous efforts is taken
into account. Thermal effects are left aside as they can be separately modeled with an acoustic impedance
[8]

1 see Eq. (26) in Section 3.1 of this paper
2 This is a reasonable assumption since the hydrodynamic boundary layer is much thicker than the acoustic boundary layer
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Figure 1: Schematic of a 2D acoustic boundary layer

iii) Spatially constant mean pressure as within the hydrodynamic boundary layer, i.e. ∇p̂ = 0
As a result, the simplified version of Eqs. (1)-(3) yields

iωρ̂+∇ · (ρ0û) = 0, (4)

iωρ0û = −∇p̂+ µ∇2û, (5)

iωp̂+ γ (p0∇ · û) = 0. (6)

The boundary layer represents a very thin zone of thickness δV =
√
2ν/ω, being ν = µ/ρ0 the kinematic

viscosity, in the direction normal to the wall (y-direction in Fig. 1). Such a thickness, which is the length scale
in y-direction, is very small compared to the acoustic wavelength (λ), which is the length scale in x-direction3.
Consequently, an order of magnitude analysis can be carried out, and spatial variations –i.e. gradients– in
directions parallel to the wall can be neglected, further simplifying Eqs. (4)-(6):

Equations

Continuity

X-momentum

Y-momentum

Energy

Acoustic Viscous Boundary Layer

iωρ̂+ ρ0

(
∂û

∂x
+
∂v̂

∂y

)
= 0 (7)

iωρ0û = −∂p̂
∂x

+ µ
∂2û

∂y2
(8)

∂p̂

∂y
= 0 (9)

iωp̂+ γp0

(
∂û

∂x
+
∂v̂

∂y

)
= 0 (10)

Inviscid Acoustic Flow

iωρ̂∞ + ρ0
∂û∞
∂x

= 0 (11)

iωρ0û∞ = −∂p̂∞
∂x

(12)

−

p̂∞ = c20 ρ̂∞ (13)

Equations (7)-(10) describe the acoustic flow within the boundary layer. There, û and v̂ represent complex
acoustic amplitudes of the velocity in x- and y-directions, respectively. The governing equations of the one-
dimensional inviscid flow outside the boundary layer, Eqs. (11)-(13), are obtained from Eqs. (7)-(10) setting µ
and v̂ to zero. In that set, the subscript (·)∞ designates the variables outside the boundary layer. Furthermore,
c0 stands for the speed of sound. Finally, note that a momentum equation in y-direction does not exist outside
the boundary layer because of the unidimensionality of the motion.
Equation (9) implies that the pressure throughout the boundary layer is constant and equal to its value outside
the boundary layer, i.e. p̂ = p̂∞(x). Therefore, pressure can be written overall as a function of the acoustic
velocity outside the boundary layer, û∞(x), using Eq. (12). Specifically, by doing so in Eq. (8), a differential
equation for û is obtained

iωρ0 (û− û∞) = µ
∂2û

∂y2
. (14)

Equation (14) can be integrated applying proper boundary conditions: zero velocity at the wall, i.e. û(0) = 0
and the velocity of the inviscid acoustic flow at the upper edge of the boundary layer, i.e. û(∞) = û∞(x).
Consequently, after integrating Eq. (14), the velocity profile of û yields

û = û∞(x)
[
1− e−(1+i) y

δV

]
. (15)

3 The boundary layer thickness compared to the acoustic wavelength is δV /λ ≈
√
ων/c0, for gases they only reach the same order

of magnitude for extremely high frequencies ω ≈ 1010rad s−1
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To obtain the density distribution within the boundary layer, the energy and continuity equations, Eqs. (7)
and (10), can be combined by equaling the divergence of velocity. After some mathematical manipulation, the
isentropic relation (13) is recovered and thus it applies within the viscous boundary layer too. As a result, the
density is directly proportional to the pressure and, like the pressure, it keeps the same value as outside the
boundary layer, i.e. ρ̂ = ρ̂∞(x). To determine the last unknown of the problem, the velocity in y-direction (v̂),
Eq. (7) is used. Inserting Eq. (13) and Eq. (15) into Eq. (7) results in

iω
ρ̂∞(x)

ρ0
+

dû∞(x)

dx︸ ︷︷ ︸
=0

=
dû∞(x)

dx
e
−(1+i) y

δV − ∂v̂

∂y
, (16)

where the left hand side of the previous expression can be identified as the continuity equation outside the
boundary layer, Eq. (11), which equals to zero. As a result, a differential equation for v̂ is obtained. The
boundary condition at the wall is again zero velocity, v̂(0) = 0, so integrating Eq. (16), the following expression
is obtained

v̂(x, y) = −
√
ν

iω

dû∞(x)

dx

[
e
−(1+i) y

δV − 1
]
. (17)

Equation (17) describes the v̂-velocity distribution within the boundary layer. When y tends to infinity, the
value of the normal velocity at the upper edge of the boundary layer is recovered

v̂∞(x) =

√
ν

iω

∂û∞
∂x

. (18)

Equation (18) can be implemented as a boundary condition (û · n = v̂∞) to one-dimensional inviscid acoustic
flows. Compared to the usual slip condition û ·n = 0, which imposes acoustic hard walls –i.e. no acoustic flow
going through the walls, the presence of the boundary layer implies a "softening" of the walls allowing some
acoustic flux crossing them. That flux can be interpreted as loss of acoustic energy that causes attenuation of
the acoustic waves. Finally, note that Eq. (18) depends solely on the acoustic ideal flow, for that reason one
does not need to resolve the boundary layer, avoiding mesh refining near the boundaries. Consequently, the
CPU times remain small.

2.2 Extension of the One-Dimensional Model to Three Dimensions

In the previous section a boundary condition for one-dimensional acoustics was obtained. Such a boundary
condition cannot be employed for transverse modes because there, the acoustic velocity locally behaves as
a three-dimensional vector. In this section, it is shown that locally, in curvilinear coordinates, the structure
of the boundary layer is equivalent to a two-dimensional boundary layer like the one derived in the Section
2.1. Such a local representation cannot be directly applied in the acoustic governing equations. Therefore, a
transformation from curvilinear coordinates to cartesian coordinates is carried out. As a result a generic model,
which is applicable to universal thermoacoustic stability prediction tools, is obtained.

Figure 2: (a) Generic geometry (b) Flat boundary layer (c) Velocity profile within the boundary layer

The curvature of a typical combustor geometry is much larger than the boundary layer thickness 4. Therefore,
one can assume that the boundary layer is confined to a two-dimensional flat layer as depicted in Fig.2 (b). In

4Assuming ν ≈ 10−5 m2s−1; ω ≈ 103 rad s−1 and the curvature Rc ≈ 10−2 m−1, then Rc/δv ≈ 102
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that two-dimensional framework, using a working plane defined by the normal to the chamber’s surface (n)
and the direction of the acoustic velocity (s), the boundary layer can be treated as a two-dimensional boundary
layer, in the same way it was done in the Section 2.1. The difference between the one- and three-dimensional
approaches lies in the coordinate systems employed: cartesian coordinates, x and y, for the one-dimensional
problem and the curvilinear coordinates of the axes n and s, i.e. n and s, for three dimensions. Specifically, n
is equivalent to y and s to x, cf. Fig. 2 (c). Such an equivalence is mathematically proved next.
The continuity equation taking into account that the velocity is now a vector reads:

iωρ̂+ ρ0 (∇n · û+∇s · û) = 0, (19)

where the divergence operator is split into two: a normal divergence in n-direction (∇n) and a tangent di-
vergence in s-direction (∇s). That separates the normal and tangential contributions, with the objective of
integrating Eq. (19) in normal direction. Expanding the normal divergence as ∇n · û = ∂ûn/∂n, Eq. (19) can
be integrated analogously to Eq. (16). Consequently, the normal velocity at the upper edge of the boundary
layer yields:

ûn∞(s) =

√
ν

iω
(∇s · û∞) . (20)

In curvilinear coordinates the velocity outside the boundary layer can be expressed as û∞ = |û∞| s, where
|û∞| is the magnitude of the complex velocity vector, which in turn is a scalar function of s. Then, expanding
the divergence in tangential direction, Eq. (20) yields

ûn∞(s) =

√
ν

iω

∂|û∞|
∂s

, (21)

which is an analogous expression derived in the one-dimensional case, Eq. (18). Nevertheless, Eq. (21) is still
a function of the local curvilinear coordinate s. Then, the coordinate transformation to cartesian coordinates is
carried out by using the chain rule as follows:

∂|û∞|
∂s

=
∂|û∞|
∂x

∂x

∂s
+
∂|û∞|
∂y

∂y

∂s
+
∂|û∞|
∂z

∂z

∂s
= ∇|û∞| · s, (22)

where the partial derivative with respect to s is written in terms of the gradient of the magnitude of the acoustic
velocity and the curvilinear basis vector s. Both quantities are expressed in cartesian coordinates, particularly
the vector s, which is the direction of the velocity, can be written as s = û∞/V . As a result, the normal velocity
at the upper edge of the boundary layer, expressed in cartesian coordinates yields

ûn∞(x) =

√
ν

iω

(
∇|û∞| · û∞
|û∞|

)
. (23)

Equation (23) represents a boundary condition that can be implemented in the thermoacoustic stability predic-
tion tools.

3. Validation of the Models

In this section the derived models are validated. Firstly, the verification of the one-dimensional boundary
condition is conducted against analytic benchmarks, as they are readily available from the literature. Secondly,
the extended three-dimensional boundary condition is validated against an experimental test case.

3.1 Validation of the One-Dimensional Model against Analytic Baselines

In this section, the validation of the one-dimensional boundary condition derived in Section 2.1 is carried out.
For that purpose, the attenuated acoustic field within a straight tube is computed. Firstly, a pressure response
study the attenuation of the acoustic pressure waves is conducted and compared to an analytic dispersion rela-
tion. Secondly, an eigenvalue (EV) study is conducted and the damping rate, which is the imaginary part of the
eigenfrequency, is compared to analytic benchmarks.
A tube of 1 m length by 0.1 m radius is employed as test case (cf. Fig 3 (a)). Constant bulk pressure and
temperature are set to 101, 325 Pa and 300 K, respectively. The corresponding kinematic viscosity at 300 K
is increased by a factor 200 up to 3.14× 10−3 m2 s−1 in order to induce noticeable attenuation in the pressure
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Figure 3: (a) Geometry and acoustic pressure (b) Spatial pressure trace from FEM (red solid), analytic solution from
dispersion relation Eq. (25) (black dashed)

traces. The acoustic field is described by means of a three-dimensional Helmholtz system (cf. Eqs. (4)-(6) with
µ = 0). Such a system is solved using a Finite Element Method (FEM) scheme. The computational domain
is discretized using an unstructured tetrahedral mesh with a spatial resolution of approximately 13 cells per
wavelength. Quadratic Lagrange functions are used as weighting functions in the FEM scheme, which turns
out in approximately 35,500 degrees of freedom (DOF).
First, the pressure response study is carried out. At the inlet, the pressure is set to 1 to act as longitudinal
excitation, (cf. Fig. 3 (a)). At the outlet, p̂ − ρ0c0û = 0 is applied. That represents a non-reflecting boundary
condition, which was chosen to have a clearer pressure response without interference from the reflected waves
at the outlet as well as being consistent with the analytic solution. At the walls, to include the boundary layer
effect, Eq. (18) is used. Then, the Helmholtz system is solved for a frequency of 694 Hz (third longitudinal
mode of the tube)5. The one-dimensional pressure field is depicted in Fig. 3 (b), where one can recognize a
slightly attenuation between the inlet and the outlet of the tube. In order to assess the accuracy of the computed
attenuated pressure trace, it is compared to its analytic solution. For a longitudinal mode within a tube, the
pressure obeys [8]:

p̂an(x) = Re{p̂0 exp(ikxx)} (24)

where p̂0 and kx denote the pressure amplitude and the longitudinal wavenumber, respectively. For the tube,
the latter can be written in terms of the following relation that takes into account viscous losses [8]:

k2x
k20

=
A

A− 1
2(1− i)LpδV

, (25)

where A and Lp are the cross-sectional area and perimeter of the tube, respectively. In addition, k0 is the
unperturbed wavenumber defined as k0 = ω/c0. Using Eqs. (24) and (25), with p̂0 equals to 1, the analytic
pressure distribution is plotted in Fig. 3 (b). One can observe that there is an almost perfect match between the
analytic and the computed pressure traces. This similarity is confirmed by calculating the 2-norm relative error
between both curves, ||p̂an(x)− p̂FEM (x)||2/||p̂an(x)||2. It renders an error of 0.77 %, ensuring that a correct
attenuation is captured by the numerical model.
Second, an EV study is carried out to assess the damping rates due to the viscous boundary layer. From an EV
study are retrieved complex eigenvectors and eigenfrequencies. On the one hand, the eigenvectors represent
the shape of the oscillating mode. On the other hand, the real part of the eigenfrequency is the oscillation
frequency of the mode, while the imaginary part corresponds to the damping rate of that particular mode, i.e.
ω = ωR + iα. Again the three-dimensional Helmholtz system is numerically solved via FEM. The same mesh
as for the pressure response study is employed. At the walls Eq. (18) is applied. At the inlet and outlet zero
acoustic velocity is set (û = 0) to be consistent with the boundary conditions implemented on the analytic
model used for validation purposes. The value of the computed damping rate for the third longitudinal mode is
given in Table 1. As analytic baseline, the expression for assessing the decay in tubes introduced in [7] is used

α =
1

Rt

√
νω

2
, (26)

being Rt the radius of the tube. The value of the analytic damping rate is listed in Table 1. One can observe
that the relative error between the analytic and the numerical damping rates remains below 2 %, proving that

5The election of that particular mode attends to purely illustrative reasons, as similar errors are obtained for all the other modes
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the derived boundary condition precisely reproduces damping rates. Overall, as the three-dimensional model
is obtained from a mathematical transformation from this model, the accuracy obtained can be extrapolated for
the extended model too.

Table 1: Comparison of analytic and numerical damping rates

Analytic Eq. (26) Numerical FEM Abs. Error [%]
Damping rates [rad s−1] 26.16 26.56 1.5

3.2 Validation of the Three-Dimensional Model against an Experimental Test Case

In this section, the validation of the generic boundary condition derived in Section 2.2 is carried out. In that
regard, the damping rate of the first transverse (T1) mode of the Common Research Chamber (CRC) [11] is
computed. Subsequently, the simulated damping rate is compared to readily available measured damping rates.
The CRC is a test rig located at the DLR in Lampoldshausen and dedicated to study high-frequency combustion
instabilities. Geometrically, the test rig consists of a cylindrical combustion chamber with 0.2 m in diameter
and 0.04 m in depth (cf. Fig. 4 (a)). Before conducting reactive experiments, the combustion chamber was
acoustically characterized under cold-flow conditions. Specifically, the forced response at 1, 000 Hz, which
corresponds to the T1 mode of the chamber (cf. Fig. 4 (b)), was measured and the damping rate identified from
the power spectrum of the signal [11]. As long as there was no mean flow in the chamber, the damping was
found to be mainly due to the viscous and thermal diffusion within the boundary layers.

Figure 4: (a) Cross section of the CRC (b) Computed acoustic pressure T1 mode

To compute the damping rate of the T1 mode of the chamber two eigenvalue (EV) studies are conducted.
One is needed to assess the damping due to the viscous boundary layer, and the other for the damping due to
the thermal boundary layer, for which, as stated in the Introduction, impedance models are readily available.
Particularly, the following expression derived in [8] is employed:

ZT =
p̂

ρ0c0ûn
= ρ0c0

(1− i)c0
(γ − 1)ωδT

, (27)

where δT stands for the thermal boundary layer thickness, which is related to the viscous thickness through
the Prandtl number (Pr) via δV = δT

√
Pr. As the acoustic motions have been considered linear during the

derivations, the total damping rate is obtained by simply adding both contributions. The total damping cannot
be calculated in a single study because Eq. (23), which includes the viscous part, and Eq. (27), which considers
the thermal part, both impose a condition on the same variable ûn. Imposing two different conditions for the
same variable at the same mesh element is not numerically consistent. Therefore, the studies for the thermal
and viscous contributions have to be conducted separately. In each case, as in Section 3.1, the Helmholtz
system is solved via FEM. The computational domain is discretized using an unstructured tetrahedral mesh
with a resolution of approximately 40 cells per wavelength. Quadratic Lagrange weighting functions are again
employed for a total of 103,400 DOF. Constant mean pressure and temperature are prescribed as 101, 325 Pa
and 288.15 K, respectively. Consequently, the kinematic viscosity is 1.57 × 10−5 m2 s−1 and the Prandtl
number 0.77. The Helmholtz system is solved and the computed damping rates are listed in the Table 2 along
with the recorded CPU times (computed in a workstation with 8 cores at 3.4GHz; 16GB RAM).
The difference between the computed and experimental damping rates can be attributed to the detachment of the
acoustic boundary layer at sharp edges, which is not included in the model. That would increase the damping
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Table 2: Computed and experimental damping rates of the CRC

EV Study: Viscous EV Study: Thermal Total Experimental [11]
CPU time [s] 42 12 54 -

Damping rate [rad s−1] 6 3.8 9.8 13

near the corners due to the creation of zones of vortex shedding. Although a slight mismatch is found, the
results are in good agreement with the experimental benchmarks. Furthermore, the CPU times measured are in
the order of minutes. That allows to efficiently account for the damping due to the boundary layer since early
design stages.

4. Conclusion
A generic three-dimensional boundary condition that accounts for the viscous losses within boundary layers
was presented. Implemented in the governing acoustic equations, the boundary condition allows to calculate
the damping rates due to the boundary layer in real combustor geometries featuring transverse acoustic modes.
For validation purposes, the damping rate associated to the first transverse mode of a experimental combustor
was computed. The results were compared to readily available measured damping rates. A good agreement was
found, although a slight mismatch occurred. That small discrepancy can be ascribed to the vortex shedding that
takes place when the acoustic boundary layer detaches near to sharp edges. That contribution is not captured
by the current model and is left to future work.
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