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This paper presents the design and implementation of a multi-input multi-output (MIMO), mul-
tiple-mode, active vibration-cancellation scheme for vibration isolation systems. A flexible rec-
tangular plate that is subjected to an existing environmental disturbance introduced at the foun-
dation of the plate, is used to mimic real-life scenarios of many mechanical structures. The
control goal is to keep the plate vibration-free within a frequency range of concern, regardless
of the continuous disturbance at the base. The plate is supported by three feet (loudspeakers),
mimicking a non-ideal asymmetrical structure in a realistic situation. System identification
techniques that incorporate multiple-degree-of-freedom polynomial curve fitting methods are
used to produce a sound mathematical model of the plate that is verified through experiment.
A centralized MIMO positive position feedback (PPF) control strategy that is capable of con-
trolling multiple modes of the structure and avoiding potential control spillover problems, is
then developed. The parameters of the controller is optimized using H. norm. The stability of
the resulting closed-loop optimal PPF control system is presented. The existing three feet (loud-
speakers) of the plate form three pairs of collocated sensors and actuators that further minimize
potential spillover possibilities. The real-time controller is implemented on a dSPACE data ac-
quisition and control board utilizing Matlab Simulink® and Real-Time Workshop® software.
Both simulation and experiment studies are carried out systematically to verify each stage of
the design and implementation. The real-time experimental results show that the compensated
system can achieve up to 16.928 dB (or 85.757%) attenuation of the vibrations, which clearly
demonstrate the effectiveness of the MIMO optimal PPF controller in suppressing the vibra-
tions within the frequency range of concern. The proposed control scheme can be effectively
applied to larger structures that are potentially vulnerable to environmental disturbances, and
the resultant vibration isolation systems are sufficient in a wider range of frequencies.
Keywords: MIMO Multiple-Mode Active Vibration Control, Optimal PPF, Vibration Isolation
Systems, Multivariable System Identification, Real-Time Control System Implementation

1. Introduction

A large flexible plate mounted on a vibrating base can be regarded as an ordinary representative
model for a number of vibration isolation systems. A plate that is supported by three feet, forming a
non-ideal asymmetrical structure which can mimic many realistic systems in real-life scenarios, is
chosen for this study. This type of systems can be difficult to control due to the fact that they are
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distributed-parameter systems and often contain a large amount of vibration modes with highly reso-
nant behaviour near the structure’s natural frequencies. In most cases, however, only a small number
of dominant modes within a specified frequency range of concern is required to be controlled. Con-
sequently, uncontrolled modes may lead to the problem of spill-over [1]. The spill-over effect is of
major concern especially when sensors and actuators are poorly modelled and the amount of sen-
sor/actuator pairs is limited [2]. One efficient way to avoid the spill-over effect is based on the tech-
nique of using collocated sensors and actuators [3]. To this end, several principle methods have been
proposed in the literature that can add sufficient damping to the structure and guarantee the closed-
loop stability of the system. Principle methods that can be used for controlling multiple-mode vibra-
tions in flexible structures include positive position feedback (PPF) control [3], independent modal
space control (IMSC) [4], and resonant control [5].

PPF control was first introduced by Goh and Caughey [3] using collocated sensor/actuator pairs.
One advantage of PPF control lies in its insensitivity to spill-over effect as the controller uses a sec-
ond-order compensator that rolls off quickly at high frequencies. MIMO PPF control has been suc-
cessfully implemented in many applications, including: a beam structure with two inputs and two
outputs [6], a sandwich plate structure with four sensors and two actuators [7], a grid structure [8],
and even some non-collocated sensor/actuator systems [9].

IMSC was first proposed by Meirovich who used a modal filter to control each mode separately
to avoid the spill-over effect [4]. Many modifications and improvements have been made to the orig-
inal IMSC to optimize its performance in reducing spill-over [10]. One critical issue associated with
IMSC is the fact that for each mode to be controlled, one pair of sensor/actuator is required [11]. Also,
IMSC incurs a relatively high computational load, as it needs to calculate the highest energy mode
continuously. These disadvantages limit the possibility of extending IMSC into larger systems.

Resonant control is based on the characteristics of a resonant system, and possesses many ad-
vantages over the other control methodologies [12] [13]. Firstly, the gain selection for each mode of
the resonant controller is independent, which can reduce the computational load required. Secondly,
it is possible for a resonant controller to use one pair of sensor/actuator to control multiple modes,
thus reducing the complexity of the resulting control system. However, resonant control also has
many shortcomings. The most critical shortcoming lies in its limitation in adding ample damping to
the structure as compared to PPF and IMSC strategies [3]. Unlike resonant controllers, PPF control-
lers are able to provide a higher level of damping, while being able to control multiple modes using
one pair of sensor/actuator.

Based on the above analysis, a centralized MIMO PPF control methodology is chosen to be de-
signed and implemented to control the first three modes of the non-ideal asymmetric plate-structured
vibration isolation system. A multiple-degree-of-freedom polynomial curve fitting technique is used
to produce a valid model of the multivariable system. The stability condition of the resulting control
system is derived, which guarantees the performance of the closed-loop system over the range of
frequency of concern.

The rest of this paper is organized as follows. Section 2 discusses the system modelling process
including the physical system setup, the system identification, and the model validation. In Section 3,
the MIMO PPF controller is designed, the stability condition of the resulting control system is de-
rived, and the performance of the closed-loop system is evaluated via simulation. The implementation
of the control system and the experimental test on the physical system are performed in Section 4,
which verifies the expected control effect. Meaningful conclusions are drawn in Section 5.

2. System Modelling

2.1 Physical System
The physical vibration isolation system is constructed using two (top and base) plates as shown in
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Fig. 1. The base plate is vibrated constantly by signal w introduced from a disturbance transducer that
is driven by a signal generator. The 400mmx400mmx1.5mm top plate (density p = 2.77x10"2 m/V
and Yong’s Modulus E = 7.00x101° //m?) is bonded with the base plate using three loudspeakers
acting as sensors and actuators (namely, transducers T1, T2, and T3). The output signals from the
transducers are sensed by the interface board who performs the communication between the plant and
the dSPACE DS1103 digital controller. The control signals, once generated by the controller, are
injected into the plant via the same route using the actuation function of the transducers. The control
goal is to keep the top plate vibration free while letting it be constantly subjected to the disturbance
introduced from the base plate. Fig. 2 shows the schematic of the experimental setup.
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Fig. 1. Physical system Fig. 2. Schematic of experimental setup

2.2 Multivariable System Identification

To generate a valid model of the physical system for the purpose of the controller design, an open-
loop multivariable system identification study is carried out. For the open-loop modelling analysis,
points A and A’ in Fig. 2 are opened. An amplified sinusoidal signal whose frequency is swept be-
tween 20 Hz and 60 Hz is generated using a signal generator and is injected, respectively, into T1, T2,
and T3 as input signals u,, u,, and us to each of the transducers. For each input signal u; (j = 1, 2, 3)
acting alone, three output signals y, ;, y,;, y3; from T1, T2, and T3 are measured via accelerometers
simultaneously, and the four signals are sent to the data acquisition system (NI DAQ) to generate the
respective frequency response function (FRF) of the system:

Hy) =3y (=12.3) M
A 3x3 transfer matrix of the system, H(s), representing the model of the plant (including the top plate
and the three sensor/actuator pairs) is thus formed as:
Hyy Hiy; Hpz
Hy1 Hy; Hps
H3; Hz; Hszs
Fig. 3 shows the plate layout for the open-loop modelling analysis.
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Fig. 3. Plate layout for modelling analysis

The measured 3x3 FRFs, H;;(s) (i, j = 1, 2, 3), for the open-loop system are plotted in Fig. 4 in
black. To model the plant mathematically, a multiple-degree-of-freedom polynomial curve fitting
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method is applied to each of the measured FRF curves to produce the corresponding transfer function,
H;;(s), expressed as:

k k' rk k*
(pU ‘p”

Hy(5) = Bher G o) = T G + ) ®)

with 2f; = —={wf; + jof; /1 - ("2 and /‘t" = —{wf; — jof /1 - (l.’j. where i, j, and k represent the it"

output component, the j input, and the k*"* mode, respectively, and number N is large enough to
enable (3) to represent the true model of the plant. While the damping ratios, (l_’j, the natural frequen-

cies, a)U, and the magnitudes, , U, in (3) can be obtained directly from the curve fitting technique, the
mode shapes, (pij , In (3) need to be calculated via:

2
i =i * 2w /1— g @)

For the chosen physical system, the frequency range of concern is within 20 to 40 Hz where three
resonance frequencies for each of the measured FRFs are clearly shown in Fig. 4. A truncated model
of the system is thus formed in which each of the 3x3 FRFs expressed in (3) is shortened to include
its first three modes only. The resultant FRFs are expressed as:

—7) (®)

ok ok’
7 3 ij Pi
Hij(s) = Yi=1( =

ij

2+2( w Ss+wj
and are plotted in Fig. 4 in red. It can be seen from Fig. 4 that the truncated model relatively matches
the true model especially when comparing the magnitudes of the dominant 2" and 3" modes. There-
fore, H;;(s) can be considered as a valid simplified model of the plant based on which the MIMO PPF
controller of the system is to be designed.
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Fig. 4. Simulated truncated model FRFs (red) vs. measured true model FRFs (black)

3. Positive Position Feedback Control

3.1 Controller Design

In essence, a PPF controller receives the displacement response of a structure and provides the
structure with a control input force that aims to damp out the structure’s unwanted vibrations. Fig. 5
illustrates a MIMO PPF closed-loop system where the output signals Y(s) are sent to the PPF con-
troller to produce the active damping forces U(s). The controller contains a set of parameter matrices,
the values of which are to be designed.

To effectively control the three-input three-output plate system, simplifications in relation to the
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system parameters contained in H;;(s) (i, j = 1, 2, 3) in (5) need to be introduced. As the system is
formed by a non-ideal asymmetrical structure, for a given k™ mode (k = 1, 2, 3), the damping ratios
{l’j in the 3><3 H;;(s) are all different (with the largest deviation of 0.01), and so do the natural fre-

quencies w¥ % (with the largest deviation of 1.16 Hz). A common damping ratio, ¢ (k =1, 2, 3), is then
chosen to be the maximum damping ratio identified among all {U for the k™ mode, and a common

natural frequency, w; (k=1, 2, 3), is set to be the average value of all w . for the k' mode. The overall
closed-loop system can then be written as [14]:

Structure: €+ D&+ Q& = C"Gq (6)

Compensator: iy + D + Q. = Q.CE (7)

where & is the structure coordinate, i is the compensator coordinate, matrices D, Q, and C contain
the system parameters that are known in prior:

%5
w3 , C= |P21 P22 P23
2¢3w3 a)J P31 P32 P33

2¢1004
and matrices D, Q., and G contain the damping ratios ¢, natural frequencies w., and gains g, (k
=1, 2, 3) of the MIMO PPF controller, all of which are to be designed:

2(clwcl wgl g1
wgz , G= 92
203Wc3 w§3 K]

202w
For the purpose of effective suppression of resonant behavior of the system at the modes of concern,
wer (K=1, 2, 3) are set to be the same as those of the structure (i.e., Q. = Q) [15]. To provide sufficient
damping to the structure, ¢, and g, (k =1, 2, 3) are designed separately using other means.

P11 P12 P13

D= 2(2602 y Q =

DC= !ch

3.2 Close-loop stability analysis:
To prove the closed-loop stability of the MIMO PPF control system, define:

n=6"20"y ®
Substituting (8) into (6) and (7), and multiplying (7) with @;"/2GT/2, we obtain:
¢+ DE+ 0t = CTGY/20 %y 9)
¥+ Dy + 0. = 0L/°GY/2CE (10)
By defining E/?2 = G'/2¢, the MIMO PPF control system can be written as:
% ET/ZQT/Z
HEE | e
Let the Lyapunov Function V be:
V= [ETE+ ]+ 5708 + $To] - ETET/20 * (12)
(12) can be simplified as:
V= [ETE+ ] + 28 (@ - B)g (13)

It can be easily proven that if @ — E > 0, then V > 0 for all nontrivial €, y, €, and {. Taking the
time derivative of (12) and using (11) yield:

V=-§DE- ' Dap <0 (14)
It shows in (14) that V always below zero. Based on the Lyapunov Theorem, the MIMO PPF control
system (11) is Lyapunov Asymptotically Stable iff [16]:

Q-E=Q-CTGC>0 (15)
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Knowing Q and C, (15) can be used to guide the selection of gain G for the MIMO PPF controller.

3.3 Controller performance verification

While the controller gain G can be chosen following (15) and ¢, (k = 1, 2, 3) can be chosen be-
tween (0, 1) in principle, better selection of these parameters is crucial for an improved closed-loop
damping performance of the system. H,, optimization technique is then used to optimize the selection
of the controller parameters via minimizing the vibration influence caused by the disturbance. Define
Hij_ci(s) (i,j =1, 2, 3) as the closed-loop FRFs of the system. Using generic algorithm, the controller
parameters g, and ¢, (k =1, 2, 3) can be optimally selected by obtaining:

min||Hyj—c:(s) | (16)
The design of the controller parameter matrices, D, Q., and G is then finalized.

The resulting MIMO PPF controller performance is verified using Matlab Simulink®. In Fig. 6,
the red curves show the 3x3 open-loop FRFs, H;;(s), and the blue curves show the 3x3 closed-loop
FRFs, H;j_ci(s), utilising the optimized controller parameters. It can be seen from Fig. 6 that, for
each mode of concern, the controller provides a sufficient damping to the system that can suppress
the vibrations evidently, especially for the dominant 2" and 3" modes.

The effectiveness of the PPF control system is further verified via simulation in Fig. 7 where the
system outputs y; (t) (i = 1, 2, 3) computed using H;;(s) for the open-loop case are shown in yellow
and computed using H;;_¢;(s) for the closed-loop case are shown in pink. The system is subjected to
the same sweeping sine wave disturbance w(s) before and after control. It can be seen that the control
effects on the three supporting feet of the plate are similar — they all achieve a good vibration sup-
pression with a maximum of 89.826% (19.850 dB) attenuation. Detailed data is given in Table I.

Disturbance System Plant H(s:

Set Point=0 N

Yis)

Actuator :> Plate :> Sensor :>

PPF Controller K

Fig. 5. Block diagram of closed-loop system
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Fig. 6. Closed-loop FRFs (blue) vs. open-loop FRFs (red) Fig. 7. Simulated system response before
(yellow) and after (pink) control
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4. Experimental Result

The MIMO PPF control scheme is implemented on the physical system of Fig. 1. The controller
is realized using dSPACE DS1103, and the input/output signals are measured using NI DAQ that is
connected to the disturbance w(s) and the three outputs y;(t) (i =1, 2, 3) from T1, T2, and T3 via
accelerometers, simultaneously, as shown in Fig. 2. FRFs between the input w(s) and each of the
outputs y; (t) (i =1, 2, 3) are generated as:

Ti(s) =149 (i=1,2,3) 17)

w(s)
and are plotted to evaluated the performance of the control system. For open-loop studies, points A
and A’ in Fig. 2 are opened.

Fig. 8 shows the measured open-loop FRFs in black and the measured closed-loop FRFs in red
when the system is subjected to the same disturbance signal. It can be seen that with the MIMO PPF
control, the system achieves average attenuations of 16.928 dB (or 85.757%) for the 1%t Mode (at 23.6
Hz), 12.345 dB (or 75.859%) for the 2" Mode (at 28.9 ~ 29.4 Hz), and 10.595 dB (or 70.471%) for
the 3" Mode (at 35.2 Hz). Table 1l presents the amplitudes of each of the measured outputs before
and after control, as well as its corresponding dB attenuation. This set of data is agreeable with that
predicted in Fig. 7 (see Table I) for the simulation study of the same situation. The proposed MIMO
PPF control of the plate structure in providing sufficient damping to the system’s unwanted vibrations
and achieving a satisfactory level of vibration isolation is thus evidently demonstrated.

TABLE I. SIMULATED SYSTEM RE- o o Wesducera
SPONSE IN AMPLITUDE (x10*)
Mode 1 Tl T2 T3
Uncompensated | 3.255 2.836 2.236 g
Compensated 0.588 0.510 0.401
dB attenuation 14.871 14.903 14.922 2
Mode 2 T1 T2 T3
Uncompensated 4.261 2.787 2.643
Compensated 0.948 0.531 0.501 - e
dB attenuation 13.057 14.406 14.445 -
Mode 3 Tl T2 T3
Uncompensated 4.600 8.110 6.955
Compensated 0.468 0.830 0.715
dB attenuation 19.850 19.799 19.760

TABLE Il. EXPERIMENTAL SYSTEM
RESPONSE IN dB

Mode 1 T1 T2 T3 40 Transducer 3
Uncompensated | -62.441 | -64.495 | -66.375 S s A A
Compensated -82.737 -80.235 -81.124

dB attenuation 20.296 15.740 14.749

Mode 2 T1 T2 T3

Uncompensated -53.400 -65.384 -62.769 {

Compensated -67.995 -78.724 -71.870

dB attenuation 14.595 13.340 9.101

Mode 3 T1 T2 T3

Uncompensated -53.859 -48.855 -50.368 : PRy I
Compensated 64436 | -59.270 | -61.160 Fig. 8. Experimental system response before (black)
dB attenuation 10.577 10.415 10.792 and after (red) control
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5. Conclusion

In this paper, a MIMO multiple-mode active vibration-cancellation scheme based on PPF control
technique for vibration isolation systems is proposed. The MIMO controller is optimized using H,
with generic algorithm, and is successfully applied to the control of the first three modes of a flexible
plate bonded with three feet forming a non-ideal asymmetrical structure. The effectiveness of the
resulting control system is tested in both simulation and experiment. The proposed method can be
extended to larger structures that are potentially vulnerable to environmental disturbances, and the
resultant vibration isolation systems are effective in a wider range of frequencies of concern.
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