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This paper presents the design and implementation of a multi-input multi-output (MIMO), mul-
tiple-mode, active vibration-cancellation scheme for vibration isolation systems. A flexible rec-
tangular plate that is subjected to an existing environmental disturbance introduced at the foun-
dation of the plate, is used to mimic real-life scenarios of many mechanical structures. The 
control goal is to keep the plate vibration-free within a frequency range of concern, regardless 
of the continuous disturbance at the base. The plate is supported by three feet (loudspeakers), 
mimicking a non-ideal asymmetrical structure in a realistic situation. System identification 
techniques that incorporate multiple-degree-of-freedom polynomial curve fitting methods are 
used to produce a sound mathematical model of the plate that is verified through experiment. 
A centralized MIMO positive position feedback (PPF) control strategy that is capable of con-
trolling multiple modes of the structure and avoiding potential control spillover problems, is 
then developed. The parameters of the controller is optimized using H∞ norm. The stability of 
the resulting closed-loop optimal PPF control system is presented. The existing three feet (loud-
speakers) of the plate form three pairs of collocated sensors and actuators that further minimize 
potential spillover possibilities. The real-time controller is implemented on a dSPACE data ac-
quisition and control board utilizing Matlab Simulink® and Real-Time Workshop® software. 
Both simulation and experiment studies are carried out systematically to verify each stage of 
the design and implementation. The real-time experimental results show that the compensated 
system can achieve up to 16.928 dB (or 85.757%) attenuation of the vibrations, which clearly 
demonstrate the effectiveness of the MIMO optimal PPF controller in suppressing the vibra-
tions within the frequency range of concern. The proposed control scheme can be effectively 
applied to larger structures that are potentially vulnerable to environmental disturbances, and 
the resultant vibration isolation systems are sufficient in a wider range of frequencies. 
Keywords: MIMO Multiple-Mode Active Vibration Control, Optimal PPF, Vibration Isolation 
Systems, Multivariable System Identification, Real-Time Control System Implementation  

 

1. Introduction 
A large flexible plate mounted on a vibrating base can be regarded as an ordinary representative 

model for a number of vibration isolation systems. A plate that is supported by three feet, forming a 
non-ideal asymmetrical structure which can mimic many realistic systems in real-life scenarios, is 
chosen for this study. This type of systems can be difficult to control due to the fact that they are 
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distributed-parameter systems and often contain a large amount of vibration modes with highly reso-
nant behaviour near the structure’s natural frequencies. In most cases, however, only a small number 
of dominant modes within a specified frequency range of concern is required to be controlled. Con-
sequently, uncontrolled modes may lead to the problem of spill-over [1]. The spill-over effect is of 
major concern especially when sensors and actuators are poorly modelled and the amount of sen-
sor/actuator pairs is limited [2]. One efficient way to avoid the spill-over effect is based on the tech-
nique of using collocated sensors and actuators [3]. To this end, several principle methods have been 
proposed in the literature that can add sufficient damping to the structure and guarantee the closed-
loop stability of the system. Principle methods that can be used for controlling multiple-mode vibra-
tions in flexible structures include positive position feedback (PPF) control [3], independent modal 
space control (IMSC) [4], and resonant control [5].  

PPF control was first introduced by Goh and Caughey [3] using collocated sensor/actuator pairs. 
One advantage of PPF control lies in its insensitivity to spill-over effect as the controller uses a sec-
ond-order compensator that rolls off quickly at high frequencies. MIMO PPF control has been suc-
cessfully implemented in many applications, including: a beam structure with two inputs and two 
outputs [6], a sandwich plate structure with four sensors and two actuators [7], a grid structure [8], 
and even some non-collocated sensor/actuator systems [9]. 

IMSC was first proposed by Meirovich who used a modal filter to control each mode separately 
to avoid the spill-over effect [4]. Many modifications and improvements have been made to the orig-
inal IMSC to optimize its performance in reducing spill-over [10]. One critical issue associated with 
IMSC is the fact that for each mode to be controlled, one pair of sensor/actuator is required [11]. Also, 
IMSC incurs a relatively high computational load, as it needs to calculate the highest energy mode 
continuously. These disadvantages limit the possibility of extending IMSC into larger systems.  

Resonant control is based on the characteristics of a resonant system, and possesses many ad-
vantages over the other control methodologies [12] [13]. Firstly, the gain selection for each mode of 
the resonant controller is independent, which can reduce the computational load required. Secondly, 
it is possible for a resonant controller to use one pair of sensor/actuator to control multiple modes, 
thus reducing the complexity of the resulting control system. However, resonant control also has 
many shortcomings. The most critical shortcoming lies in its limitation in adding ample damping to 
the structure as compared to PPF and IMSC strategies [3]. Unlike resonant controllers, PPF control-
lers are able to provide a higher level of damping, while being able to control multiple modes using 
one pair of sensor/actuator.  

Based on the above analysis, a centralized MIMO PPF control methodology is chosen to be de-
signed and implemented to control the first three modes of the non-ideal asymmetric plate-structured 
vibration isolation system. A multiple-degree-of-freedom polynomial curve fitting technique is used 
to produce a valid model of the multivariable system. The stability condition of the resulting control 
system is derived, which guarantees the performance of the closed-loop system over the range of 
frequency of concern. 

The rest of this paper is organized as follows. Section 2 discusses the system modelling process 
including the physical system setup, the system identification, and the model validation. In Section 3, 
the MIMO PPF controller is designed, the stability condition of the resulting control system is de-
rived, and the performance of the closed-loop system is evaluated via simulation. The implementation 
of the control system and the experimental test on the physical system are performed in Section 4, 
which verifies the expected control effect. Meaningful conclusions are drawn in Section 5. 

2. System Modelling 

2.1 Physical System 
The physical vibration isolation system is constructed using two (top and base) plates as shown in 
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Fig. 1. The base plate is vibrated constantly by signal 𝑤𝑤 introduced from a disturbance transducer that 
is driven by a signal generator. The 400mm×400mm×1.5mm top plate (density ρ = 2.77×10−12 𝑚𝑚/V 
and Yong’s Modulus E = 7.00×1010 N/𝑚𝑚2) is bonded with the base plate using three loudspeakers 
acting as sensors and actuators (namely, transducers T1, T2, and T3). The output signals from the 
transducers are sensed by the interface board who performs the communication between the plant and 
the dSPACE DS1103 digital controller. The control signals, once generated by the controller, are 
injected into the plant via the same route using the actuation function of the transducers. The control 
goal is to keep the top plate vibration free while letting it be constantly subjected to the disturbance 
introduced from the base plate. Fig. 2 shows the schematic of the experimental setup.  

  
                Fig. 1. Physical system                                                 Fig. 2. Schematic of experimental setup  

2.2 Multivariable System Identification 
To generate a valid model of the physical system for the purpose of the controller design, an open-

loop multivariable system identification study is carried out. For the open-loop modelling analysis, 
points A and A’ in Fig. 2 are opened. An amplified sinusoidal signal whose frequency is swept be-
tween 20 Hz and 60 Hz is generated using a signal generator and is injected, respectively, into T1, T2, 
and T3 as input signals 𝑢𝑢1, 𝑢𝑢2, and 𝑢𝑢3 to each of the transducers. For each input signal 𝑢𝑢𝑗𝑗  (j = 1, 2, 3) 
acting alone, three output signals 𝑦𝑦1𝑗𝑗, 𝑦𝑦2𝑗𝑗, 𝑦𝑦3𝑗𝑗 from T1, T2, and T3 are measured via accelerometers 
simultaneously, and the four signals are sent to the data acquisition system (NI DAQ) to generate the 
respective frequency response function (FRF) of the system: 

𝐻𝐻𝑖𝑖𝑖𝑖(𝑠𝑠) = 𝑌𝑌𝑖𝑖𝑖𝑖(s)
𝑈𝑈𝑗𝑗(s)

        (i = 1, 2, 3)     (1) 
A 3×3 transfer matrix of the system, H(s), representing the model of the plant (including the top plate 
and the three sensor/actuator pairs) is thus formed as: 

𝐇𝐇(𝐬𝐬) = �
𝐻𝐻11 𝐻𝐻12 𝐻𝐻13
𝐻𝐻21 𝐻𝐻22 𝐻𝐻23
𝐻𝐻31 𝐻𝐻32 𝐻𝐻33

�      (2) 

Fig. 3 shows the plate layout for the open-loop modelling analysis.  

 
Fig. 3. Plate layout for modelling analysis 

The measured 3×3 FRFs, 𝐻𝐻𝑖𝑖𝑖𝑖(𝑠𝑠) (i, j = 1, 2, 3), for the open-loop system are plotted in Fig. 4 in 
black. To model the plant mathematically, a multiple-degree-of-freedom polynomial curve fitting 
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method is applied to each of the measured FRF curves to produce the corresponding transfer function, 
𝐻𝐻𝑖𝑖𝑖𝑖(𝑠𝑠), expressed as: 

𝐻𝐻𝑖𝑖𝑖𝑖(𝑠𝑠) = ∑ (
𝜑𝜑𝑖𝑖𝑖𝑖 
𝑘𝑘 𝜑𝜑𝑖𝑖𝑖𝑖

𝑘𝑘 ′

𝑠𝑠2+2𝜁𝜁𝑖𝑖𝑖𝑖
𝑘𝑘𝜔𝜔𝑖𝑖𝑖𝑖

𝑘𝑘 𝑠𝑠+𝜔𝜔𝑖𝑖𝑖𝑖
𝑘𝑘 2

)𝑁𝑁
𝑘𝑘=1 = ∑ (

𝑟𝑟𝑖𝑖𝑗𝑗
𝑘𝑘

𝑠𝑠−𝜆𝜆𝑖𝑖𝑖𝑖
𝑘𝑘 +

𝑟𝑟𝑖𝑖𝑖𝑖
𝑘𝑘∗

𝑠𝑠−𝜆𝜆𝑖𝑖𝑖𝑖
𝑘𝑘 ∗)

𝑁𝑁
𝑘𝑘=1    (3) 

with 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘 = −𝜁𝜁𝜔𝜔𝑖𝑖𝑖𝑖
𝑘𝑘 + 𝑗𝑗𝜔𝜔𝑖𝑖𝑖𝑖

𝑘𝑘 �1 −  𝜁𝜁𝑖𝑖𝑖𝑖𝑘𝑘
2 and 𝜆𝜆𝑖𝑖𝑖𝑖𝑘𝑘

∗ = −𝜁𝜁𝜔𝜔𝑖𝑖𝑖𝑖
𝑘𝑘 − 𝑗𝑗𝜔𝜔𝑖𝑖𝑖𝑖

𝑘𝑘 �1 −  𝜁𝜁𝑖𝑖𝑖𝑖𝑘𝑘
2 where i, j, and k represent the 𝑖𝑖𝑡𝑡ℎ 

output component, the  𝑗𝑗𝑡𝑡ℎ input, and the 𝑘𝑘𝑡𝑡ℎ mode, respectively, and number 𝑁𝑁 is large enough to 
enable (3) to represent the true model of the plant. While the damping ratios, 𝜁𝜁𝑖𝑖𝑖𝑖𝑘𝑘 , the natural frequen-
cies, 𝜔𝜔𝑖𝑖𝑖𝑖

𝑘𝑘 , and the magnitudes, 𝑟𝑟𝑖𝑖𝑖𝑖𝑘𝑘, in (3) can be obtained directly from the curve fitting technique, the 
mode shapes, 𝜑𝜑𝑖𝑖𝑖𝑖 

𝑘𝑘 , in (3) need to be calculated via: 

𝜑𝜑𝑖𝑖𝑖𝑖 
𝑘𝑘 = 𝑟𝑟𝑖𝑖𝑖𝑖𝑘𝑘 ∗ 2𝜔𝜔𝑖𝑖𝑖𝑖

𝑘𝑘 �1 −  𝜁𝜁𝑖𝑖𝑖𝑖𝑘𝑘
2      (4) 

For the chosen physical system, the frequency range of concern is within 20 to 40 Hz where three 
resonance frequencies for each of the measured FRFs are clearly shown in Fig. 4. A truncated model 
of the system is thus formed in which each of the 3×3 FRFs expressed in (3) is shortened to include 
its first three modes only. The resultant FRFs are expressed as: 

𝐻𝐻�𝑖𝑖𝑖𝑖(𝑠𝑠) = ∑ (
𝜑𝜑𝑖𝑖𝑖𝑖 
𝑘𝑘 𝜑𝜑𝑖𝑖𝑖𝑖

𝑘𝑘 ′

𝑠𝑠2+2𝜁𝜁𝑖𝑖𝑖𝑖
𝑘𝑘𝜔𝜔𝑖𝑖𝑖𝑖

𝑘𝑘 𝑠𝑠+𝜔𝜔𝑖𝑖𝑖𝑖
𝑘𝑘 2

)3
𝑘𝑘=1      (5) 

and are plotted in Fig. 4 in red. It can be seen from Fig. 4 that the truncated model relatively matches 
the true model especially when comparing the magnitudes of the dominant 2nd and 3rd modes. There-
fore, 𝐻𝐻�𝑖𝑖𝑖𝑖(𝑠𝑠) can be considered as a valid simplified model of the plant based on which the MIMO PPF 
controller of the system is to be designed. 
  

 

Fig. 4. Simulated truncated model FRFs (red) vs. measured true model FRFs (black) 

3. Positive Position Feedback Control 
3.1 Controller Design 

In essence, a PPF controller receives the displacement response of a structure and provides the 
structure with a control input force that aims to damp out the structure’s unwanted vibrations. Fig. 5 
illustrates a MIMO PPF closed-loop system where the output signals 𝐘𝐘(s) are sent to the PPF con-
troller to produce the active damping forces 𝐔𝐔(s). The controller contains a set of parameter matrices, 
the values of which are to be designed.  

To effectively control the three-input three-output plate system, simplifications in relation to the 
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system parameters contained in 𝐻𝐻�𝑖𝑖𝑖𝑖(𝑠𝑠) (i, j = 1, 2, 3) in (5) need to be introduced. As the system is 
formed by a non-ideal asymmetrical structure, for a given kth mode (k = 1, 2, 3), the damping ratios 
 𝜁𝜁𝑖𝑖𝑖𝑖𝑘𝑘  in the 3×3 𝐻𝐻�𝑖𝑖𝑖𝑖(𝑠𝑠) are all different (with the largest deviation of 0.01), and so do the natural fre-
quencies 𝜔𝜔𝑖𝑖𝑖𝑖

𝑘𝑘  (with the largest deviation of 1.16 Hz). A common damping ratio, 𝜁𝜁𝑘𝑘 (k =1, 2, 3), is then 
chosen to be the maximum damping ratio identified among all  𝜁𝜁𝑖𝑖𝑖𝑖𝑘𝑘  for the kth mode, and a common 
natural frequency, 𝜔𝜔𝑘𝑘 (k =1, 2, 3), is set to be the average value of all 𝜔𝜔𝑖𝑖𝑖𝑖

𝑘𝑘  for the kth mode. The overall 
closed-loop system can then be written as [14]: 

   Structure:  𝛏̈𝛏 + 𝐃𝐃𝛏̇𝛏+ 𝛀𝛀𝛀𝛀 = 𝐂𝐂𝑇𝑇𝐆𝐆𝐆𝐆                  (6) 
Compensator: 𝛈̈𝛈 + 𝐃𝐃𝐜𝐜𝛈̇𝛈 +𝛀𝛀𝐜𝐜𝛈𝛈 = 𝛀𝛀𝐜𝐜𝐂𝐂𝐂𝐂               (7) 

where 𝛏𝛏 is the structure coordinate, η is the compensator coordinate, matrices 𝐃𝐃,  𝛀𝛀, and 𝐂𝐂 contain 
the system parameters that are known in prior: 

𝐃𝐃 = �
 2𝜁𝜁1𝜔𝜔1

 2𝜁𝜁2𝜔𝜔2
 2𝜁𝜁3𝜔𝜔3

�,  𝛀𝛀 = �
𝜔𝜔12

𝜔𝜔2
2

𝜔𝜔3
2
�,  𝐂𝐂 =  �

𝜑𝜑11 𝜑𝜑12 𝜑𝜑13
𝜑𝜑21 𝜑𝜑22 𝜑𝜑23
𝜑𝜑31 𝜑𝜑32 𝜑𝜑33

� 

and matrices 𝐃𝐃𝐜𝐜, 𝛀𝛀𝐜𝐜, and 𝐆𝐆 contain the damping ratios 𝜁𝜁𝑐𝑐𝑐𝑐, natural frequencies 𝜔𝜔𝑐𝑐𝑐𝑐, and gains 𝑔𝑔𝑘𝑘 (k 
= 1, 2, 3) of the MIMO PPF controller, all of which are to be designed: 

𝐃𝐃𝐜𝐜 = �
 2𝜁𝜁𝑐𝑐1𝜔𝜔𝑐𝑐1

 2𝜁𝜁𝑐𝑐2𝜔𝜔𝑐𝑐2
 2𝜁𝜁𝑐𝑐3𝜔𝜔𝑐𝑐3

�,  𝛀𝛀𝐜𝐜 = �
𝜔𝜔𝑐𝑐1
2

𝜔𝜔𝑐𝑐2
2

𝜔𝜔𝑐𝑐3
2
�,  𝐆𝐆 = �

𝑔𝑔1
𝑔𝑔2

𝑔𝑔3
� 

For the purpose of effective suppression of resonant behavior of the system at the modes of concern, 
𝜔𝜔𝑐𝑐𝑐𝑐 (k =1, 2, 3) are set to be the same as those of the structure (i.e., 𝛀𝛀𝐜𝐜 = 𝛀𝛀) [15]. To provide sufficient 
damping to the structure, 𝜁𝜁𝑐𝑐𝑐𝑐 and 𝑔𝑔𝑘𝑘 (k =1, 2, 3) are designed separately using other means.  

3.2 Close-loop stability analysis: 
To prove the closed-loop stability of the MIMO PPF control system, define: 

𝛈𝛈 = 𝐆𝐆−1/2𝛀𝛀𝐜𝐜
1/2𝛙𝛙                            (8) 

Substituting (8) into (6) and (7), and multiplying (7) with 𝛀𝛀𝐜𝐜
−𝑇𝑇/2𝐆𝐆𝑇𝑇/2, we obtain:  

𝛏̈𝛏 + 𝐃𝐃𝛏̇𝛏 + 𝛀𝛀𝛀𝛀 = 𝐂𝐂𝑇𝑇𝐆𝐆1/2𝛀𝛀𝐜𝐜
1/2𝛙𝛙             (9) 

𝛙̈𝛙 + 𝐃𝐃𝐜𝐜𝛙̇𝛙 + 𝛀𝛀𝐜𝐜𝛙𝛙 = 𝛀𝛀𝐜𝐜
1/2𝐆𝐆1/2𝐂𝐂𝐂𝐂          (10) 

By defining 𝐄𝐄1/2 = 𝐆𝐆1/2𝐂𝐂, the MIMO PPF control system can be written as: 

� 𝛏̈𝛏
𝛙̈𝛙
� + �𝐃𝐃 𝟎𝟎

𝟎𝟎 𝐃𝐃𝐜𝐜
� � 𝛏̇𝛏
𝛙̇𝛙
� + �

𝛀𝛀 −𝐄𝐄𝑇𝑇/2𝛀𝛀𝐜𝐜
𝑇𝑇/2

−𝛀𝛀𝐜𝐜
1/2𝐄𝐄1/2 𝛀𝛀𝐜𝐜

� � 𝛏𝛏𝛙𝛙� = 𝟎𝟎                   (11) 

Let the Lyapunov Function 𝑉𝑉 be: 

     𝑉𝑉 = 1
2
�𝛏̇𝛏𝑇𝑇𝛏̇𝛏+ 𝛙̇𝛙𝑇𝑇𝛙̇𝛙�+ 1

2
[𝛏𝛏𝑇𝑇𝛀𝛀𝛀𝛀+ 𝛙𝛙𝑇𝑇𝛀𝛀𝐜𝐜𝛙𝛙]− 𝛏𝛏𝑇𝑇𝐄𝐄𝑇𝑇/2𝛀𝛀𝐜𝐜

𝑇𝑇/2𝛙𝛙                   (12) 

(12) can be simplified as: 

𝑉𝑉 ≥ 1
2
�𝛏̇𝛏𝑇𝑇𝛏̇𝛏+ 𝛙̇𝛙𝑇𝑇𝛙̇𝛙�+ 1

2
𝛏𝛏𝑇𝑇(𝛀𝛀− 𝐄𝐄)𝛏𝛏             (13) 

It can be easily proven that if 𝛀𝛀 − 𝐄𝐄 > 𝟎𝟎, then 𝑉𝑉 > 0 for all nontrivial 𝛏𝛏, 𝛙𝛙, 𝛏̇𝛏, and 𝛙̇𝛙. Taking the 

time derivative of (12) and using (11) yield:  

𝑉̇𝑉 = −𝛏̇𝛏𝑇𝑇𝐃𝐃𝛏̇𝛏 − 𝛙̇𝛙𝑇𝑇𝐃𝐃𝐜𝐜𝛙̇𝛙 < 0                                 (14) 

It shows in (14) that 𝑉̇𝑉 always below zero. Based on the Lyapunov Theorem, the MIMO PPF control 

system (11) is Lyapunov Asymptotically Stable iff [16]:  

                                                𝛀𝛀− 𝐄𝐄 = 𝛀𝛀− 𝐂𝐂𝑇𝑇𝐆𝐆𝐆𝐆 > 𝟎𝟎      (15) 
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Knowing 𝛀𝛀 and 𝐂𝐂, (15) can be used to guide the selection of gain 𝐆𝐆 for the MIMO PPF controller. 

3.3 Controller performance verification 
While the controller gain 𝐆𝐆 can be chosen following (15) and 𝜁𝜁𝑐𝑐𝑐𝑐 (k = 1, 2, 3) can be chosen be-

tween (0, 1) in principle, better selection of these parameters is crucial for an improved closed-loop 
damping performance of the system. 𝐻𝐻∞ optimization technique is then used to optimize the selection 
of the controller parameters via minimizing the vibration influence caused by the disturbance. Define 
𝐻𝐻𝑖𝑖𝑖𝑖−𝐶𝐶𝐶𝐶(𝑠𝑠) (i, j = 1, 2, 3) as the closed-loop FRFs of the system. Using generic algorithm, the controller 
parameters 𝑔𝑔𝑘𝑘 and 𝜁𝜁𝑐𝑐𝑐𝑐 (k = 1, 2, 3) can be optimally selected by obtaining: 

min�𝐻𝐻𝑖𝑖𝑖𝑖−𝐶𝐶𝐶𝐶(𝑠𝑠)�      (16) 
The design of the controller parameter matrices, 𝐃𝐃𝐜𝐜, 𝛀𝛀𝐜𝐜, and 𝐆𝐆 is then finalized.   

The resulting MIMO PPF controller performance is verified using Matlab Simulink®. In Fig. 6, 
the red curves show the 3×3 open-loop FRFs, 𝐻𝐻�𝑖𝑖𝑖𝑖(𝑠𝑠), and the blue curves show the 3×3 closed-loop 
FRFs, 𝐻𝐻𝑖𝑖𝑖𝑖−𝐶𝐶𝐶𝐶(𝑠𝑠), utilising the optimized controller parameters. It can be seen from Fig. 6 that, for 
each mode of concern, the controller provides a sufficient damping to the system that can suppress 
the vibrations evidently, especially for the dominant 2nd and 3rd modes. 

The effectiveness of the PPF control system is further verified via simulation in Fig. 7 where the 
system outputs 𝑦𝑦𝑖𝑖(𝑡𝑡) (i = 1, 2, 3) computed using 𝐻𝐻�𝑖𝑖𝑖𝑖(𝑠𝑠) for the open-loop case are shown in yellow 
and computed using 𝐻𝐻𝑖𝑖𝑖𝑖−𝐶𝐶𝐶𝐶(𝑠𝑠) for the closed-loop case are shown in pink. The system is subjected to 
the same sweeping sine wave disturbance 𝑤𝑤(𝑠𝑠) before and after control. It can be seen that the control 
effects on the three supporting feet of the plate are similar – they all achieve a good vibration sup-
pression with a maximum of 89.826% (19.850 dB) attenuation. Detailed data is given in Table I. 

 
Fig. 5. Block diagram of closed-loop system 

 

 
Fig. 6. Closed-loop FRFs (blue) vs. open-loop FRFs (red) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7. Simulated system response before 

(yellow) and after (pink) control 
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4. Experimental Result 
The MIMO PPF control scheme is implemented on the physical system of Fig. 1. The controller 

is realized using dSPACE DS1103, and the input/output signals are measured using NI DAQ that is 
connected to the disturbance 𝑤𝑤(𝑠𝑠) and the three outputs 𝑦𝑦𝑖𝑖(𝑡𝑡) (i = 1, 2, 3) from T1, T2, and T3 via 
accelerometers, simultaneously, as shown in Fig. 2. FRFs between the input 𝑤𝑤(𝑠𝑠) and each of the 
outputs 𝑦𝑦𝑖𝑖(𝑡𝑡) (i = 1, 2, 3) are generated as: 

𝑇𝑇𝑖𝑖(s) = 𝑌𝑌𝑖𝑖(s)
𝑤𝑤(𝑠𝑠)

 (i = 1, 2, 3)     (17) 
and are plotted to evaluated the performance of the control system. For open-loop studies, points A 
and A’ in Fig. 2 are opened.  

Fig. 8 shows the measured open-loop FRFs in black and the measured closed-loop FRFs in red 
when the system is subjected to the same disturbance signal. It can be seen that with the MIMO PPF 
control, the system achieves average attenuations of 16.928 dB (or 85.757%) for the 1st Mode (at 23.6 
Hz), 12.345 dB (or 75.859%) for the 2nd Mode (at 28.9 ~ 29.4 Hz), and 10.595 dB (or 70.471%) for 
the 3rd Mode (at 35.2 Hz). Table II presents the amplitudes of each of the measured outputs before 
and after control, as well as its corresponding dB attenuation. This set of data is agreeable with that 
predicted in Fig. 7 (see Table I) for the simulation study of the same situation. The proposed MIMO 
PPF control of the plate structure in providing sufficient damping to the system’s unwanted vibrations 
and achieving a satisfactory level of vibration isolation is thus evidently demonstrated. 

TABLE I.  SIMULATED SYSTEM RE-
SPONSE IN AMPLITUDE (×10-4) 

 
TABLE II.  EXPERIMENTAL SYSTEM 

RESPONSE IN dB 
 

Mode 1 T1 T2 T3 
Uncompensated  3.255 2.836 2.236 
Compensated 0.588 0.510 0.401 
dB attenuation 14.871  14.903  14.922 
Mode 2 T1 T2 T3 
Uncompensated 4.261 2.787 2.643 
Compensated 0.948 0.531 0.501 
dB attenuation 13.057 14.406 14.445 
Mode 3 T1 T2 T3 
Uncompensated 4.600 8.110 6.955 
Compensated 0.468 0.830 0.715 
dB attenuation 19.850  19.799  19.760  

Mode 1 T1 T2 T3 
Uncompensated  -62.441 -64.495 -66.375 
Compensated -82.737 -80.235 -81.124 
dB attenuation 20.296 15.740 14.749 
Mode 2 T1 T2 T3 
Uncompensated -53.400 -65.384 -62.769 
Compensated -67.995 -78.724 -71.870 
dB attenuation 14.595 13.340 9.101 
Mode 3 T1 T2 T3 
Uncompensated -53.859 -48.855 -50.368 
Compensated -64.436 -59.270 -61.160 
dB attenuation 10.577 10.415 10.792 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Fig. 8. Experimental system response before (black) 

and after (red) control 
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5. Conclusion 
In this paper, a MIMO multiple-mode active vibration-cancellation scheme based on PPF control 

technique for vibration isolation systems is proposed. The MIMO controller is optimized using 𝐻𝐻∞ 
with generic algorithm, and is successfully applied to the control of the first three modes of a flexible 
plate bonded with three feet forming a non-ideal asymmetrical structure. The effectiveness of the 
resulting control system is tested in both simulation and experiment. The proposed method can be 
extended to larger structures that are potentially vulnerable to environmental disturbances, and the 
resultant vibration isolation systems are effective in a wider range of frequencies of concern. 
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