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The reproduction of a sound field measured using a microphone array is an active topic of re-
search. To this end, loudspeaker and microphone arrays are used. Classical methods rely on spa-
tial transforms (such as spherical Fourier transform for Ambisonics) or pressure matching using
least-mean-square formulation. For both methods, all the reproduction sources (i.e. loudspeakers)
will typically be activated. Although this can provide a reduced or minimized reproduction error
evaluated at the microphone array, it is not necessarily the most useful solution for listening pur-
poses. Indeed, the fact that all reproduction sources are concurrently active can potentially lead
to a blurry spatial image (an example would be the common front-back confusion). To solve that
potential limitation, the lasso and elastic-net algorithms were recently studied in order to favor the
sparsity of the reproduction source signals. In these studies, it was shown that sparsity can indeed
lead to a sharper source distribution at the cost of reduced physical accuracy of the reproduced
sound field. In this paper, the group lasso is investigated to alleviate such potential limitations of
the lasso, where the "group" refer to groups of reproduction sources. The aim of the group lasso is
to provide sparsity at the group level and continuous smooth solution inside groups. In the recent
literature, many simple or detailed algorithms have been proposed for the real-valued group lasso
without a consensual position from the community. For sound field reproduction, a simple algo-
rithmic implementation is proposed as an interpretation of the group lasso for complex quantities.
Simulation results in free field show that several of the limitations of the lasso and elastic-net al-
gorithms are solved. Potentials and current limitations of the group lasso are discussed. Based on
the reported investigation, future research openings include: the possibility of overlapping groups
and the algorithmic implementation.
Keywords: sound field reproduction, group lasso

1. Introduction

In spatial audio, Sound Field Reproduction (SFR) is aimed at the extended reproduction of a
sound pressure field within a listening area. In this paper, we are concerned with the scenario where a
microphone array is used to capture an unknown target sound field to be reproduced in a subsequent
step using an array of sources. Classical methods to convert a microphone array recording (regular
or irregular) into suitable inputs of reproduction sources include spatial transforms (such as spherical
Fourier transform for Ambisonics) or pressure matching using least-square formulations. For both
methods, all the reproduction sources will typically be active in order to minimize the reproduction
error at the microphone array. However, this might not be ideal for listening purposes: The fact that all
sources are active can lead to a blurry spatial image or confusion of source localization. One possible
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approach to solve that issue is the use of a least-square formulation while looking for solution sparsity,
i.e. a limited amount of concurrently active reproduction sources to increase the solution contrast. For
linear regression and least-square problems, 1-norm regularization can induce solution sparsity [1].
Common methods are the lasso [1] and elastic-net [2] cost functions.

In the context of SFR, the lasso [1] and the elastic-net [2] introduced interesting features: 1) re-
duced amount of concurrently active source, and 2) automatic snapping to the closest reproduction
source [3, 4]. One of the obvious potential limitation is that in the case of extremely sparse solu-
tion, the automatic snapping feature can, for sufficiently dense reproduction source array, typically
provides the correct incoming direction but with an erroneous reproduced wave front curvature [4].
This paper is a continuation or our previous work [4], but the group lasso [5] is investigated. The
group lasso also combines 1-norm and 2-norm regularization [5]. However, the group lasso, when
adapted to SFR, imposes 1-norm regularization between groups of reproduction sources and 2-norm
regularization within groups of reproduction sources. Therefore, the group lasso favors sparsity be-
tween group but provides non-sparse solution within active groups. This has foreseeable advantages
over the 2-norm regularization, the lasso and the elastic-net. First, for the group lasso, once a group is
activated, all sources within this group will be active and a correct wave front curvature might there-
fore be recreated by the group of closely spaced-reproduction sources. Second, if groups are logically
defined (e.g. front, left, right, top, and so on), the potential issue of localization blur or front-back
confusion might be solved. Indeed, these issues are caused by active reproduction sources that are not
between the sources that created the target sound field and the listening area.

2. Theoretical background: lasso, elastic-net, group lasso

The direct problem at angular frequency ω (rad/s) relates the reproduced sound pressures p to
the reproduction source signals s: p = Gs with p = [p1 · · · pM ]T ∈ CM×1, G ∈ CM×L is a
known transfer matrix, and reproduction source signals vector s = [s1 · · · sL]T ∈ CL×1. The
arrays include M microphones and L reproduction sources (loudspeakers). In this paper, simulations
are provided for the free-field case, therefore spherical waves are used for the reproduction sources:
Gml = ejkrml/rml where rml is the Euclidean distance between microphone m and source l, k is the
wavenumber. The target sound field is denoted d ∈ CM×1. The p-norm is ‖s‖p = (

∑L
l=1 |sl|p)1/p

with the 1-norm: ‖s‖1 =
∑L

l=1 |sl| and the 0-norm ‖s‖0: the number of non-zero elements.

2.1 The lasso and the elastic-net

Both the lasso [1, 7] and the elastic-net [2] were recently compared by the authors [4] for SFR.
The corresponding cost-function is recalled [4]:

Jλ,α =
1

2
‖d−Gs‖22 + λα‖s‖1 +

(1− α)
2

λ‖s‖22 and sλ,α = argmin(Jλ,α) (1)

The amount of regularization is controlled by λ. The α parameter controls the transition between the
lasso α = 1 and the elastic-net 1 > α ≥ 0. The first term of Eq. (1) introduces reproduction error
minimization. The presence of the solution 1-norm introduces selection of a limited amount of active
sources in the solution sλ,α. A larger λ reduces the number of active sources. One advantage of the
lasso is that the solution path (i.e. source coefficients sl as function of penalization λ) activates one
(or very few) sources at a time while decreasing λ. It is also known that for λ & ‖GHd‖∞, there is no
active source [3]. Therefore, λ was introduced as a control of reproduction source sparsity in [3, 4].

Since the cost function includes the 1-norm, the optimal solution sλ,α cannot be obtained by an-
alytical means. Because of its simplicity and widespread use, the coordinate descent algorithm is
used (see Section 3) to find the solution iteratively. With respect to the selection of the penaliza-
tion amount λ, if one sets a parameter Lmax defined as the maximum number of concurrently active
sources, a decreasing λ search is performed from ‖GHd‖∞ until ‖s‖0 ≈ Lmax.
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2.2 The classical least-square solution

The classical least-square (LS) solution with Tikhonov regularization will be used for comparison
purpose. It is derived from the cost function given by Eq. (1) with α = 0. In that case, the complex
gradient can be derived and set to zero to obtain the following optimal solution s [8]:

sλ,0 = (GHG+ λI)−1GHd (2)

In this paper, λ is set so that it corresponds to the group lasso penalization amount.

2.3 The group lasso

The group lasso was initially introduced by Yuan and Lin in 2006 [5]. An implementation based
on the coordinate and block coordinate descent algorithms was later proposed for the sparse group
lasso [6]. In this paper, the original version and algorithmic approach [6] to the group lasso are
adapted to the problem at hand. It is reminded that the original implementation of the group lasso was
provided for real-valued quantities. In this paper, the group lasso is adapted to complex quantities.
The corresponding algorithm, which is an interpretation of the group lasso, is discussed in Sec. 3.

There are N predefined groups of reproduction sources so that G and s can be partitioned: G =
[G1 · · ·Gn · · ·GN ] and s = [sT1 · · · sTn · · · sTN ]T . It is assumed that there is no overlap between groups
and that each group includes Ln sources. The cost function of the group lasso is given by:

Jβ =
1

2
‖d−

N∑
n=1

Gnsn‖22 + β
N∑
n=1

‖sn‖2 and sβ = argmin(Jβ) (3)

The second term introduces 1-norm regularization at group level and 2-norm regularization within a
group [6]. Therefore the group lasso sparsity operates at the group level: depending on β, an entire
group may be active or not. Because of the specific nature of the group lasso, a different algorithm
must be used for the computation of the optimal solution that will minimize Eq. (3) [6]. These
algorithmic implementations are discussed in Sec. 3. In this paper, β is a user-defined parameter.

3. Complex coordinate descent and iterative group lasso solution

3.1 Complex coordinate descent for the lasso and the elastic-net

Within the context of SFR, reference [3] provides a complex version of the coordinate descent
for the lasso. The complex coordinate descent algorithm for the lasso and the elastic-net is found
in [4]. Since the group lasso requires the knowledge of the sources belonging to which group, the
coordinate descent cannot be used for the group lasso. An iterative implementation of current group
lasso algorithms is proposed.

3.2 Group lasso algorithmic solution

The algorithmic solution of the sparse group lasso proposed by Simon et al. [6], from which our
proposal is derived, is briefly recalled for the case of the group lasso [5]. Our algorithm is defined as
(details are provided in the appendix):

1. Initialize iteration index i = 0, and initially set β (optimal selection of β is left for future research)
2. Start with an initial solution, e.g. a LS solution with all groups active:

s(0) = (GHG+ βI)−1GHd (4)

3. Start the iteration with i = 1
4. For iteration index i
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(a) Initialize group iteration n = 1, copy the solution s(i) = s(i−1)

(b) For group n, define the following partial residual with group n contribution missing

r(i)n = d−
N∑
k=1
k 6=n

Gks
(i)
k (5)

(c) Perform n-th group-level test based on

if ‖GH
n r

(i)
n ‖2 ≤ β, then s(i)n = 0 (6)

(d) If ‖GH
n r

(i)
n ‖2 > β then minimize the regularized 2-norm of the error between the partial residual

r
(i)
n and the pressure reproduced by group n:

Jβ,n =
1

2
‖r(i)n −Gns

(i)
n ‖22 + β‖s(i)n ‖2 and s(i)n = argmin{Jβ,n} (7)

Since the regularization is based on ‖sn‖2 and not ‖sn‖22, a Tikhonov-like explicit solution is not
available (see Appendix) and an iterative gradient descent (iteration j) is used with step size µ

s(i,j+1)
n = s(i,j)n − µ

∂Jβ,n(s
(i,j)
n )

∂sn
= s(i,j)n − µ

(
GH
n Gns

(i,j)
n +

βs
(i,j)
n

‖s(i,j)n ‖2
−GH

n r
(i)
n

)
(8)

(e) Repeat steps 4.(b) to 4.(e) for all groups n = 1...N
5. Stop iteration i when a stop criterion on the reproduction error ‖d −Gs‖2 or on the source input s is

reached. Otherwise, continue.
6. Repeat step 4 for next iteration index i+ 1.
Theoretical developments and explanations for Eqs. (6) and (8) are provided in the appendix.

4. Simulation results

4.1 Array configuration

The loudspeaker and microphone arrays used for the simulation are shown in Fig. 1(a). The
loudspeaker array circumscribes a 4×4 m horizontal area. There are L = 96 loudspeakers arranged in
N = 4 groups corresponding to straight bars of 24 loudspeakers each. The microphone array includes
M = 9 microphones arranged in a sparse 1-m-radius circular array with a central microphone.

4.2 Results

Simulation results are first reported for the simple case of a harmonic target sound field caused by
a single spherical wave pulsating at 440 Hz with sound speed c = 343 m/s. The real part of the target
sound field is shown in Fig. 1(a). The sound fields reproduced using the lasso (α = 1, Lmax = 24), the
elastic-net (α = 0.1, Lmax = 24), the group lasso (β = 0.5) and the least-square solutions (λ = 0.5)
are shown in Fig. 1(b) to (e), respectively. The aim of this simulation is to validate the group lasso
iterative solution, check for group activity and compare the four solutions. Since each group includes
24 sources, the maximum number of concurrently active sources Lmax was set to 24 for the lasso and
elastic-net. First, one notes that the lasso and elastic-net solutions effectively reproduce the target
field (Figs. 1(b) and (c)) and provides sparse solutions. However, some active reproduction sources
are visible on the right, left and bottom sides of the reproduction array. Ideally, they should not be
active since they do not correspond to target sound field incoming direction (i.e. from the top of
the figures, as in Fig. 1(a)). For both the lasso and the elastic-net, the reproduced sound pressure
level is slightly below the target sound pressure level (see Fig. 1(f)). This is an expected behavior
of both solutions caused by the shrinkage of the solution coefficients [1, 2]. In practical situations,
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Figure 1: (a) Microphone and loudspeaker arrays in the horizontal plane. The L = 96 loudspeakers
are shown as square markers. There are four source groups (N = 4) where the group alternation
corresponds to black and white marker alternation. One group is the bottom bar, the other the right
bar, and so on. The M = 9 microphones are shown as black bullets. Top views (x1–x2 horizontal
plane) of the real parts of sound fields (Pa) at 440 Hz. (a) Target sound field, (b) reproduced using the
lasso (α = 1, Lmax = 24), (c) reproduced using the elastic-net (α = 0.1, Lmax = 24), (d) reproduced
using the group lasso (β = 0.5), (e) reproduced using the LS solution (λ = 0.5). Loudspeakers
signals |sl| and active loudspeakers are shown as green bars.

this can be simply compensated using a global gain adjustment where the 2-norm of the reproduced
sound pressure at the microphone array is adjusted to fit the 2-norm of the target sound pressure at the
microphones. The reproduced sound field using the group lasso also correctly reproduces the target
sound field and only one group of reproduction sources is active: the top bar which corresponds to
the target sound field incoming direction. Furthermore, as it is theoretically expected for the group
lasso, all the sources within the active group are active: only between-group sparsity is observed for
the group lasso. It is therefore concluded that the proposed algorithmic implementation and group
lasso cost function are both correct.

For the LS solution (Fig. 1(e)), since the microphone array is relatively sparse, the sound field is
only correctly reproduced at the microphone positions and all reproduction sources are active. This
reduces the performance of the LS solution in comparison with the other solutions.

The group lasso provides several advantages. First, since an entire group of neighboring sources
are active, the curvature of the wave front can be reproduced more precisely over an extended area.
Second, since the active sources tend to be limited to an area between the virtual target sound and the
listening area, there should be less risk of front-back confusion or a resulting blurry spatial image.

The normalized reproduction error fields are shown in Fig. 2 using E(x1, x2) = |d(x1, x2) −
p(x1, x2)|/|d(x1, x2)|with the target sound pressure field d(x1, x2) and reproduced sound field p(x1, x2).
Clearly, the lasso (Fig. 2(a)), the elastic-net (Fig. 2(b)), and the group lasso (Fig. 2(c)) provide a
small reproduction error in the listening area. However, it is clear that the group lasso offers a much
smoother reproduction error in the listening area. This is caused by the fact that a single cluster, a
group, of reproduction sources is active for the group lasso. For the lasso and the elastic-net, even
if the same amount of sources are active, their large separation distances create interference patterns
in the resulting error fields. The LS solution provides, as expected, the lowest reproduction error
but only at the exact microphone positions. Outside these control points, the LS solution provides
normalized reproduction error in the range of (or above) one.

The solution paths (i.e. each coefficient evolution |sl| as function of β or λ) are shown in Fig. 3.

4.3 Case of multiple sources

This section presents the case of a target sound field created by two virtual sources at 440 Hz.
The target and reproduced sound fields are shown in Fig. 4. For the reported reproduced sound fields
(Fig. 4(b) to (d)), the shrinkage effect was compensated to illustrate the shrinkage compensation
principle. In Fig. 4, this shrinkage is compensated by a simple post-processing gain adjustment.

The LS solution (Fig.4(e)) is not satisfying as the reproduction is only accurate at the microphone
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Figure 2: Local normalized reproduction error E(x1, x2) = |d(x1, x2)− p(x1, x2)|/|d(x1, x2)| for the
cases shown in Fig. 1 for the (a) lasso (α = 1, Lmax = 24), (b) elastic-net (α = 0.1, Lmax = 24),
group lasso (β = 0.5), LS (λ = 0.5). The color range is the same for each plot with a color range of
0 (black) to 1 (white) (linear scale). Microphones are shown as green dots.

10
−2

10
0

10
2

−0.01

0

0.01

0.02

0.03

λ

(a)

10
−4

10
−2

10
0

0

0.05

0.1

0.15

0.2

λ

(b)

10
−4

10
−2

10
0

0

0.05

0.1

0.15

0.2

λ

(c)

10
−2

10
0

−0.01

0

0.01

0.02

0.03

0.04

0.05

β

(d)

Figure 3: Solution paths, i.e. L = 96 traces of |sl| as function of penalization amount (λ or β). (a) LS.
(b) Lasso with α = 1. (c) Elastic-net with α = 0.1. (d) Group lasso. The λ or β values to obtain the
desired sparsity or group sparsity are shown as vertical dashed lines.

locations. Furthermore, all reproduction sources are active even if the target sound field correspond
to only two virtual sources. Localization accuracy is therefore expected to be reduced. Both the
lasso and the elastic net (Fig. 4(b) and (c)) reproduce the sound field with a sparse solution limited
to Lmax = 24 active sources. However, active sources are noticed in the left bottom corner of the
figures. The group lasso provides an interesting solution with only two active groups of reproduction
sources. Furthermore, these two active groups correspond to the incoming directions of the target
sound field (Fig. 4(a)). This represents an interesting feature of the group lasso that favors sparsity
at group level: it avoids the creation of interference patterns caused by active sources in directions
not related to the target sound field. Accordingly, the overall performance of the group lasso is
demonstrated. Furthermore, even with an incomplete target sound field sampling using a sparse
microphone array, the group lasso solution provides an accurate sound field reproduction with correct
wavefront curvatures over an extended listening area (Fig. 4(d)). Error fields are shown in Fig. 5.

5. Conclusion

This paper investigated the group lasso cost function applied to SFR. In comparison with the lasso
and the elastic-net solutions, the group lasso induces group-level sparsity. As shown in this paper,
this has great potential to circumvent some of the limitations of the sparse solutions obtained from
the lasso or the elastic-net. Indeed, it was shown that the group lasso is able to recreate a correct
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Figure 4: Top views (x1–x2 horizontal plane) of the real parts of sound fields (Pa). (a) Target sound
field, (b) reproduced using the lasso (α = 1, Lmax = 24, with shrinkage compensation), (c) repro-
duced using the elastic-net (α = 0.1, Lmax = 24, with shrinkage compensation), (d) reproduced
using the group lasso β = 1.5 (with shrinkage compensation), (e) reproduced using the LS solution
(λ = 1.5). Loudspeakers signals |sl| and active loudspeakers are shown as green bars.

Figure 5: Local normalized reproduction error for the cases shown in Fig. 4. (a) Lasso (α = 1,
Lmax = 24, with shrinkage compensation), (b) elastic-net (α = 0.1, Lmax = 24, with shrinkage
compensation), (c) group lasso (β = 1.5, with shrinkage compensation), (d) LS (λ = 1.5). The color
range is the same for each plot with a color range of 0 (black) to 1 (white) (linear scale). Microphones
are shown as green dots.

wave front curvature by using clusters of adjacent active reproduction sources. By marked contrast,
the lasso and the elastic-net often distort the reproduced wave front curvature. Furthermore, it has
been shown that the group lasso has the potential to only activate groups of sources that correspond
to incoming directions in the target sound field, hence potentially reducing the risk of front-back
confusion or blurry sound localization.
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6. Appendix: Group lasso and subgradient equations

The subgradient is required to find the solution of the group lasso cost function. The subgradient,
subderivative, and subdifferential are generalizations of derivative to non-differentiable functions. A
subderivative of a function f(x) in x0 is the slope of any line passing by (x0, f(x0)) below the graph
of f(x) and outside epi(f(x)) (the epigraph). The subgradient equations of Eq. (3) for group n at
optimal solution ŝ are given by [6]

GH
n (d−

N∑
k=1

Gkŝk) = βu with (9)

u ∈ CLn×1 =

{
ŝn
‖ŝn‖2 ∀ ŝn 6= 0

∈ {u : ‖u‖2 ≤ 1} if ŝn = 0
(10)

If ŝn = 0, we have
GH
n rn = βu if ŝn = 0 (11)

with partial residual given by

rn = d−
N∑
k=1
k 6=n

Gksk (12)

Then, in terms of norms, one finds

‖GH
n rn‖2 = β‖u‖2 if ŝn = 0 (13)

However, with Eq. (10) for ŝn = 0, we have ‖u‖2 ≤ 1 so that one can write

‖GH
n rn‖2 ≤ β if ŝn = 0 (14)

Therefore, Eq. (14) is the group-level test as found in Step. 4.(c) of the algorithm. To find a group n
to minimize over (with ŝn 6= 0), a new optimization problem is introduced

Jβ,n =
1

2
‖d−

N∑
k=1
k 6=n

Gkŝk −Gnŝn‖22 + β‖ŝn‖2 =
1

2
‖rn −Gnŝn‖22 + β‖ŝn‖2 (15)

For ∂Jβ,n
∂sn

= 0 we have an implicit solution that is not like the explicit straightforward Tikhonov-like
regularized solution of Eq. (15):

ŝn =

(
GH
n Gn +

β

‖ŝn‖2
I

)−1
GH
n rn with

∂Jβ,n
∂sn

=

(
GH
n Gn +

β

‖ŝn‖2
I

)
ŝn −GH

n rn (16)

This is so since the regularization is ‖sn‖2 =
√
sHn sn and not ‖sn‖22 = sHn sn. Then we introduce

a new iteration index j, and solve iteratively using the gradient descent as shown in Eq. (8). This
corresponds to Step 4.(d) of the proposed algorithm.
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