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Sound generated by cavitating flows in a duct

by P.A. Lush

Department of Mechanical Engineering

University of Southampton

1'. In troduction .

The impetus for this work stems from the current interest in measuring
the sound produced by cavitation in hydraulic systems in order to monitorthe rate of cavitation erosion. Most hydraulic machines, valves and meter-ing orifices operate with a 'certain amount of cavitation since its completeelimination is not always feasible. There is some evidence to suggest thatcavitation erosion rate and sound pressure level produced in the liquid areclosely related, Deeprose et_ a1. (1974). Therefore as a first step towardsquantifying this relationship we have studied the sound radiated by severalcavitating flows in order to determine scaling-laws in terms of fluidvelocity, cavitation number andflow size. No configurations were chosenwhich between them exhibited Several distinct types of cavitation, whichhave been classified by Knapp et a1. (1970) as travelling, fixed and vortextypes. The two configurations were a venturi-type section and a suddenexpansion. These were produced in the parallel—sided working section ofa cavitation tunnel by inserting a convergent-divergent wedge with a sharpedge at the throat and a rear facing step with a streamlined upstream
portion (figure 1).
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At high cavitation number just below inception, the cavitation produced
by the con-div wedge is the travelling bubble type. As the cavitation

number is reduced the bubbles coalesce to produce a fixed cavity and at
a certain point the cavity pulsates in an approximately periodic manner.
For the rear facing step at high cavitation number, the cavitation is of
the vortex type, with bubbles forming in vortices produced in the shear
layer between the main flow and the separated region. As cavitation num-
her is reduced, the separated region eventually becomes a fixed cavity,
which also pulsates at a certain cavitation number. In both cases at
low enough cavitation number the cavity becomes indefinitely long and the
flow is said to be at breakdown. on the practical side. the con-div
wedge is intended to represent the blade of a centrifugal pump impeller
and the rear facing step to represent a valve or orifice.

We have also proposed a simple theoretical model for the sound radia—
tion from each type of cavitation, using Rayleigh's analysis of a collaps-
ing spherical cavity as a starting point. From this model we have deduced
scaling laws and compared them with the laws actually measured. The
measurements were made using a flush mounted quartz piezoelectric pressure
transducer which couldbe positioned at various points in the tunnel work-
ing section. We used a Vibrometer pressure transducer type GQPSOO and
it was coupled to a Vibrometer charge amplifier type TA-3/C. The signal
was analysed using a B a K sound level neter type 2203 as an RMS meter.
The cavitation tunnel was designed so that the pressure and flow rate
could be controlled independently and therefore the tunnel could be
operated either at constant velocity or constant cavitation number.

2. Acoustic power produced by cavitation.

Since cavitation is essentially a volume pulsation, the sound is
effectively produced by a distribution of monopoles. The strength of
these sources can be estimated by considering the flow field surrounding
a collapsing empty Spherical cavity. This problem was first investigated
by Rayleigh (1917) and he obtained a solution for the motion of the
cavity wall as a function of time. He also calculated the pressure per-
turbation at anypoint in the liquid and, although he was interested only
in the pressure produced near the cavity, his result can be used to obtain
the pressure at great distances. Even though the theory assumes incom-
pressible flow, this result is equivalent to the far field sound pressure
provided that the sound wavelength is much greater than the size of the
cavity. The acoustic energy produced by a single collapsing cavity can
then be calculated byintegrating the square of the pressure perturbation
over the time taken for the cavity to collapse. Unfortunately this result
gives infinite energy because the pressure becomes indefinitely large as
the cavity approaches zero radius. However in reality the collapse is
arrested at a small but finite radius by gas trapped in the cavity. We
assm1e that the minimum cavity radius is always the sane fraction of the
maximum size, i.e., this ratio is independent of the external pressure.
This is equivalent to assuming that the gas content or volume fraction of
the liquid is always the same. On making this assumption it is possible
to deduce a scaling law for the acoustic energy radiated by a single
cavity as it collapses. 'Ihe acoustic power produced by a distribution of
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cavitation bubbles is therefore the total amount of acoustic energy pro-
duced per unit time, whichcan be obtained by simply sunning the contri-
bution from each cavity assuming it is uncorrelated with the remainder.
We find that the scaling law for the acoustic power w is given by,

w 22. AP. 3/2 3"1 c C p) Rm . (1)

where v is the number of cavities collapsing per unit time, Ap is
the difference between the ambient pressure and the saturated vapour
pressure, and R is the maximum radius of the cavity and p and c are
density and speed of sound of the liquid. This result is effectively
given by Ross (1976) and further details of the derivation can be found
in Lush and Hutton (1976).

The result (1) applies strictly to the case of radiation in a free
field. Since we are concerned with cavitation confined in a duct, we
expect that this result requires some modification. The peak frequency
of cavitation noise is in the region of 1 kHz (see Lush (1975)) and at
this frequency the sound wavelength is 1.5m. Consequently for duct sizes
less than about half this amount, only the plane wave mode can propagate.
This has a profound effect on the sound pressure variation during the
collapse of the cavity andthe acoustic power radiated.

In essence for the plane wave case, the fluid motion between the
collapsing ‘cavity and the sound waves in the duct is incompressible.
Consequently the particle velocity of the plane wave and hence the pres-
sure amplitude are directly proportional to cavity wall velocity. This
is in contrast to the free field case where it can be shown that the
pressure amplitude is proportional to the square of the cavity wall
velocity. Therefore on making the cane calculations as in the free
field case, we obtain a scaling law for acoustic power for the plane
wave mode as follows:

5
A Rm

W'v vpc FE T. , (2)

where A is the cross sectional area of the duct. We find that this
result (2) applies only athigh cavitation number when the cavitation
bubble volume fraction is very small. It appears that, as soon as the
extent of the bubble region increases to a significant fraction of the
size of the duct, the sound speed in the duct is reduced. This has the
effect of decreasing the sound wavelengths and allowing more duct modes
to propagate. The sound Speed in a liquid with gas bubbles is very low
indeed and since we would expect a large number of modes to propagate,
the sound field can be regarded as diffuse. The acoustic energy is the
same as in a free field but with the energy channelled down the duct.
Therefore equation (1) gives the acoustic power at sufficiently low cavi-
tation number.

   



  

3. Scaling laws for sound pressure level.

We now consider the conversion of the results for acoustic power (1)
and (2), into scaling laws for sound pressure level, i.e., mean square
pressure, since this is the quantity measured in practice. For both the
plane wave mode and the diffuse field, the acoustic intensity will be
uniform across the duct. In the former case it will be equal to lec
and in the latter, because the intensity is the sauna in all directions,
it will be one quarter of this. Thus in both cases, the scaling for mean
square pressure is obtained by multiplying the power by pc/A.

Referring to (l) and (2), it can be seen that we require scaling laws
for v, the number of cavities collapsing per unit time, Ap, the
difference between ambient pressure and vapour pressure and R , the maxi-

. mum size of the cavity. The scaling laws for these quantities‘11 depend
upon the type of cavitation involved which in turn depends on the config—
uration and the cavitation number. The cavitation number, 0, relates
pressure p and velocity U in the vena contracts of the flow and it is
virtually independent of the configuration. It is defined as,

P - pv
- __ (3)
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where pv ,is the saturated vapour pressure at the bulk liquid temperature.

0’

At fairly high cavitation number just below inception, each Configura-
tion exhibits a different type of cavitation. The cavitation for the con-
div wedge consists of travelling bubbles and that for the rear facing
step is the vortex type. As cavitation number is reduced in each case
the cavitation becomes a fixed cavity which also pulsates at a certain
cavitation nmber. For the travelling bubble cavitation, we assume that
the bubbles are appearing and disappearing at an average rate proportional
to the rate of production of eddies, i.e., U/t, where t is the throat
width. We assume that the bubbles are collapsing in the region of the
stagnation point downstream of the throat where the flow reattaches to the
wall. Since the pressure in the throat will be nearly equal to vapour
pressure, the pressure difference tending to collapse the bubbles will be
proportional to the dynamic pressure $9112. The maximum bubble size will
be proportional to the length of the bubble region and this may be
estimated by assuming that the bubbles effectively form a single vapour
cavity, whose free surface lies on the arc of a circle. From this it may
be deduced that the cavity length and hence R scales as to':l (see
Lush and Hutton (1976) for details). ‘1‘

Similar arguments may be advanced for the vortex type cavitation ex-
cept in this casa the bubble size depends upon the reduction in pressure
produced by vortices embedded in the shear layer. This reduction may be
estimated from the cavitation number at inception, 0-, and it may be
shown that Rm scales as t v’Ui - . 1

When for the con-div wedge the travelling bubble cavitation gives way
to the fixed cavity, the scaling for v, Ap and R111 remains essentially

    



 

the same until the cavity begins to pulsate. At this point, the frequency
v becomes inversely proportional to the cavity length and hence depends
on a, i.e., as UU/t. For the rear facing step, the scaling for R
changes when the cavitation becomes the fixed cavity type. By again
assuming that the cavity is vapour filled with a free surface lying on
the arc of a circle it is possible to show that cavity length and hence Rm
scales as ta’i .

For both the travelling bubble and vortex types, the cavitation number
is high enough that only the plane wave mode is propagating. lhus the
above reSults are substituted in equation (2) to obtain the scaling laws

for mean square pressure. For the various stages of the fixed cavity
type, the cavitation number is low and the sound field is diffuse. In
these cases, the results are substituted in equation (1). BecauSe of the
complex situation a wide variety of scaling laws are produced and these
are summarised in the table.

TABLE
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4. Experimntal results and comparison with scaling laws.

We have measured the sound pressure level of cavitation produced by the
con-div wedge over a range of cavitation number at a fixed velocity (fig.2).
These results show essentially the sound pressure for the fixed cavity. At

high cavitation number, the variation is 0'3 which is the diffuse field
result for either travelling bubbles or a fixed cavity which is oscillat-
ing at a frequency not connected with the cavity length. At slightly
lower cavitation number, the dependence becomes 0'2 when the fixed _
cavity pulsates at a frequency inversely proportional to cavity length.
At even lower‘cavitation number, the dependence becomes 0'1 and at
this point the cavity is longer than the divergent part of the wedge. The
flow becomes similar to that for the rear facing step and therefore the
a dependence alters accordingly to that appropriate for the pulsating
cavity behind a step.
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Figure 2

The variation of sound pressure level with o for the rear facing
step (fig. 3) shows clearly the sound produced by vortex type cavitation.
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Figure 3  
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At high cavitation number the variation is that for the plane wave mode, *
i.e., (a. -o)5 2. This should give way to the difque field result at
intermediiite cavitation numbers but the change will not be detectable
because the variation is rather slow anyway. The sound pressure rises
when the fixed cavity type begins at about a = 0.1 and increases approxi-
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mat y at the rate appropriate to the non-pulsating fixed cavity, i.e.,
—3o .

We have also measured the sound pressure as a function of velocity
for the con-div wedge at fixed cavitation numbers of o = 0.1 and 0.3
(fig. 4) . At the lower cavitation number the velocity dependence is

very nearly as pre-
dicted for the diffuse
field case. Since the
diffuse field will revert
to the plane wave mode at
high enough 0, we might
expect the velocity
dependence at o 0.3 to \
be nearer 112. The result
indicates that the varia—
tion is about U3, which‘
is noticeably less than
variation at the lower
value of o. Presumably
several lower order modes
are propagating in addi-
tion to the plane wave
mode and hence the depend-
ence is between U2 and
U". The de endence should
approach U as the vel-
ocity is increased because
the associated frequency
increase will allow more
modes to propagate.
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The scaling laws for
mean square pressure
shown in the table do not
involve the length scale
of the flow. Measurenents
of the sound produced by

two geometrically similar sudden expansions differing in size by a factor
of two indicate that the sound preSSure level is very nearly independent
of scale (fig. 5). The two tests were made at the same throat velocity
and with the transducers in geometrically similar positions. The varia-
tions are similar over most of the cavitation number range except near
breakdown (o = 0), where the cavities are nearing the end of the tunnel
working section.
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Figure 5

5 . Conclusions .

We have found that the cavitation noise produced by venturi-type and

sudden expansion configurations can be qualitatively described by scaling

laws deduced from Rayleigh's model of a collapsing spherical cavity. In

order to apply the general results for acoustic power to these configura-

tions we had to derive simple relations for the number of cavities

collapsing (per unit time), the pressure causing collapse and the maximum

cavity size. We faund that these depended upon the type of cavitation

and the configuration.

We found that the effect of the duct on the sound generated could be

adequately accounted for by considering the limiting cases of long wave-
lengths,when only the plane wave is propagatingfind that of short wave-

lengths, when the sound field is diffuse. It appeared that the plane wave

result applied at very high cavitation number just below inception when

the extent of the cavitation region was very small. At low cavitation

numbers, we argued that the increase in the extent of cavitation effect-

ively reduced the sound speed in the duct and alloved more modes to

propagate so that the sound field could be treated as diffuse.

There was a wide variety of o dependences for the sound pressure as

summarised in the table. We were able to attribute the differences in o
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dependence to changes in cavitation type or differences in the geometry
of the flow. We found four different types of cavitation, namely,
travelling bubble, vortex type in a shear layer, fixed cavity and a
fixed cavity which pulsated periodically. In general we found that the
velocity dependence of the noise at constant cavitation nuniaer was U“,
except possibly at high 0 where it was nearer U3. In addition the
sound pressure level appeared to be independent of size of configuration.
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