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ABSTRACT '

This a er presents a radial basis function network as a one step ahead predictive speech
si ter. The prediction residual can be interpreted as a powerful pitch pulse detector
wfich shows improved performance over aconventional autoregressive filter and allows further
process' to maloe more accurate estimations of pitch pulse osition, the pitch, and the
regions a voiced and unvoiced speech. In noisy speech the int uction of recursive elements
into the radial basis function network allows successful pitch estimation to be maintained.

1. INTRODUCTION

The aim of this paper is to present the application of a radial basis function network (RBFN)
predictive filter to :fieech itch period estimation. Speed: production can be modeled using
an auto-regressive pole ter with an excitation signal comprising a series of quasi-periodic
pitch pulses during voiced speech and white noise during unvoiced speech. The detection of
the pitch pulse in voiced parts of speech is important for applications such as linear predic-
tive coding (LPG) where reduced sensitivity to the fundamental uency in the prediction
residual dunng training provides a more accurate determination of t e speech parameters.

The application of neural networks for the identification and interpretation of s eech si als
is of particular interest due to the non-linear and non-stationary nature of speerg [4] an the
ability of neural networks to model non-linear functions and time series [2.3]. However, neural
network a plications in s eerh signal processing have tended to focus on extracted feature
spaces so as LPC coe cients for their inputs [5], due mainly to the importance of LPG
parameters in vocal tract identification.

Work has been undertaken using the residuals of LPG rediction for the identification of
nonlinear speech elements [8} and this pmer extends t ‘s concept to use RBFNs {or the
on-line non- inear prediction 0 speech sign in the time sample domain using minimal prior
information about the signal. The prediction residual provides a powerful pitch pulse detector
and the improvement in pitch pulse detection over a comparable linear system suggats that
the non-linear model provides a more accurate representation of the speech.

2. RADIAL BASIS FUNCTION NETWORKS

RBFNI [l] are two layer networks comprising a hidden layer and an output layer. The
hidden layer contains nodes which perform a non-linear transformation of the input data.
The Euclidean distance between a parameter vector called a centre and the input data is
calculated and the result is passed through a non-linear function to generate the node output.
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Figure 1: Recursive radial basis function network

The Euclidean distance, II: — Ci", of a. node can be written :-

"e

II: - 51'”: = 2m ~ ca)“ ' (1)
d=l

where gigsthe centre for input d on node j, 24 is element d of the input vector 3:, and n, is
the mun r of inputs to each node. The node output is given by :-

hj = om: — en) (2)
where is a. non-linear function. The thin—plate spline function, 0(1’) = v" log(u), is chosen
here for its non-localised response which accommodates the rapidly changing speech state-
space. The RBFN centres are selected randomly within the bounds of the speech state-space
and fixed to prevent the centres being biased by short term speech characteristics.

The out ut layer consists of a linear combiner which calculates the weighted sum of hidden
layer no es, grving an output at node i of :-

“A

17.- = Z Iii-'5} (3)
.i=|

where 1),,- are the node weights and m. is the number of hidd nodes.

Recurrent RBFNs (RRBFNs) incorporate lagged network outputs as node inputs, hence noise
corrupted input signals are augmented with prediction outputs whirl: have areduced noise
content. The in ut vector 1 at sample I: for a network with n lagged speech samples, a, and
m lagged RBFprredictions, g}, is thus :-

11: = lat-1, u - .ak—mfik-nn - tilt-n] (4)

Figure 1 shows the RRBFN structure.

272 Proc.l.O.A. Vol 16 Part 5 (1994)

 



  

Proceedings of the Institute of Acoustics

RECURRENT RADIAL BASIS FUNCTIONS . ..

3. NETWORK ADAPTATION

The mllponse of the RBFN is linear with respect to the output weight for each non-linear
node. his results inan output error surface with only one global minimum and allows a
Kalman Filter (KP) approach to he used to update the hidden layer weights and reduce the
men squared prediction error. The KF equations {or updating the hidden layer weights are :-

Ks = Pit-1th. [A + “Pa—1&4“ (5)

PA = % [Pi-I — Kndth] (6)

9s = ek-l + Kits (7)

where K is the KF gain and P is the prediction error covariance matrix. 9 is the vector of
hidden layer weights. c is the prediction error at - 17., and o is the Vector of node outputs hi.

,\ is a forgetting factor which allows the RF to estimate system parameters which may he
varying by exponentially windowinvgéxrevious samples. A compromise of adaptive speed and
previous sample hiss must be ethic and S ado et al. [6] suggest a value of 0.95 s A S 0.99
although this can he made adaptive based on t e filter error information content. An optimum
filter generates constant error information for a signal with a Gaussiannoise drivi source,
but larger errors occur when the source signal changes, such as at pitch events he filter
error information is the weighted sum of squares of the residual errors, V1, :-

_ .
Vi = 22 A"?! (8)

i=1

which can he expressed recursively as :-

V. = Av.-. + e: (1 — ism) (9)

Applying a constraint of constant error information, V. = V1.4 = V], allows a variable
forgetting factor (VFF), A1,. to be defined from equation (9) as :-

_ Ak=1—e2 (l-éth) IV: (10)

Large prediction errors occur at the instant of lottal closure resulting in a small value of A...
Since the clfective memory of the system is l 1 — 1;. samples, the Kalman filter estimat
are based on a shorter window of speech allowang rapi adaptation to the changin dynamics.
This creates a sh error at the point of closure which is rapidly eliminated by the changing
forgetting factor, 0 served against the average filter error the peaks are candidates for the
onset of the pitch pulse. Simple post-processin techni us can then be used to select the
most likely pitdi positions from these pulse can idates
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Figure 2: Filter residuals for “eight” at a) 21dB, b) 3dB

4. PITCH CANDIDATE DETECTION

An RRBFN with 20 hidden layer nodes was implemented as a one ste ahead predictive speech

filter with an input vector, 1, comprising 6 speech samples and 3 agged predictions. This

was found to be the minimum network specification required to give good pitch detections in

noise. The network was compared with a ‘20 node RBFN using only 6 speech samples and a

Kalman filter where the network weights were connected directly to six speech samples. The

network weights were updated using the RF equations, (5..7 and a constant forgetting factor
of A = 0.95 was found to give the best compromise of sign adaptation and pitch detection.

Lowering the SNR to 3dB considerably deteriorates the KF voice source estimate. The net-
works were tested usin the utterance l‘eight" sampled at 20kHz with signal-to-noise ratios

(SNRs) of 21dB and 3d . The eight sample mean squared filter residuals were used to rovide

an estimate of the voice source signal and the results are shown in figure 2. At a gNR of

21dB both the RRBFN and the RBFN provide a powerful pitch pulse detector on order of

magnitude better than the KF results, consequently the effects of noise are more significant

in the inter retation of the KF prediction error. The RBFNS also detect the onset of the
Iricative /t alter the stop, but does not show the noise source of the fricative.

The RBFN, however. produced a clear voice source estimate with a noise floor equal to that of

the KF and allowed accurate pitch detectiOn to be maintained. Because the RBFN prediction

is based on only six 1 ed noisy speech samples, the voice source estimate still contains a large

noise presence. The R BFN, though, was able to reduce the noise floor between pitch events

and produced sharper residual peaks as the recursive elements provided a signal estimate with

reduced noise content. A consequence of this was that estimation errors which were fed back
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Figure 3: Pitch track for a. male TIMIT speaker

produced significant peaks in the non-voiced areas of speech which were later eliminated by
a. pitch post-processing algorithm.

The RRBFN was extended to include the variable forgetting factor of equation ‘10). e” was
replaced by the voice source estimate and V, was replaced by the mean squared fi ter residual
over uvernl itch periods. A lower limit was set for A such that A. = man: No.8] end a gain
factor, 7 = .15, was introduced to equation (10) to prevent large prediction errors erasing
the filter memory, giving :- _

At =1— re: (1 — éim.) /V. (11)
This approach produced a. lower noise floor on the filter residual prior to a. pitch event where
the error information in constant and was found to produce the most reliable pitch candidates
for the post-processing algorithm.

 
5. PITCH POST-PROCESSING AND TRACKING

An RRBFN pitch detector and associated poet—Emcessing a] orithms were applied to real
speech obtained from the DARPA TIMIT :1pr database. itch candidate selection was
based on threehoicling the voice source estimate at twice its stande deviation over several
pitch pulses. producing a. single poise as the error exceeds the threshold.
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Figure 4: Pitch track for a. female TIMIT speaker

Candidate pulses were then filtered using statisticel methods to select the most likely pitch po-
sitions. A window of 15 pitch candidates was selected and the median and standard deviation
of the estimated pitch periods calculated, The median ll preferred because it is 1m influ-
enced h extreme pitch estimation errors. roducing more consistent traces when it is used

to calcu ate the fundamental frequency. on the median pitch period exceeds the standard
deviation this indicates a consistent pitch period within the candidate window. The speech is
considered voiced and candidatu in the window with apitch within one standard deviation
of the window median are selected as the pitch pulses. Discarded ulna are eliminated from
the window and the remaining pitch period estimates are adjust accordingly.

Figure 3 shows the pitch frequency track obtained in the above way for the TIMlT phrase
“Don't ask me to carry an oily 1' like that’I spoken by a male. The track is plotted for
what is determined as voiced spec and overlaid onto the FFT derived spectra am. The
algorithm provides a very clear indication of the areas of voiced speech, wit no 0 Vince mis—
classification of unvoiced speech as voiced. The largest errors occur in quiet speech where the

SNR is lowest and the speech dynamics are changing, producing pitch estimates with variable
statistics.

The pitch tracks lie along the fundamental resonance in the spectrogram which is further

evidence for the correct determination of the pitch period, and closer inspection reveals that
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the selected pitch pulses do occur at the instant of glottal closure. The track is not smooth
because the median pitdi value is used to calculate the fre uency instead of the mean. Results
show that the mean value produces smoother plots, but t ese were severely affected by poor
pitch estimates and the resulting tracks are not as accurate.

In an attem t to stretch the validity of the algorithm this experiment was repeated usin
the phrase “ghe had your dark suit in easy wash water all year" spoken by a female an
the result is shown in figure 4. A ain t ere is good identification of voicedspeech and the
pitch tracks a pear to follow close y the fundamental spectral resonance. However, there is
a greater ten ency for the pitch track to incorporate incorrect pitch estimates, raising the
estimated fundamental frequency. This is largel because voice source thresholdin is now
bci performed over three times the number 0 pitch pulses as that of male speec . This
can] be overcome by adapting the pitch selection and post-processin algorithms to account
for the reduced pitch period, although this makes the algorithm speaier dependent.

6. DISCUSSION

This paper has demonstrated the ability of RBFNs to estimate the non-linear system dy-
namics of speech. The prediction residual provides a powerful pitch pulse predictor and the
improvement in pitch detection over a comparable linear redictor supports the proposition
that a non-linear model provides a more accurate description of the speech signal. Although
signal noise corruption causa significant deterioration of this result, incorporating recursion
into the structure provides a. reduced noise signal estimate which improves prediction.

The resulting front end speech processor has proved to be an excellent source of pitch can-
didates for pitch post-procsin , achieving good performance in a voiced/unvoiced classifier
and pitch trackin al rithm. e pitch pulses are suitable for pitch synchronous estimation,
although it is pre era le to use theinitial voice source estimate as a more accurate guide to
the areas of consistent dynamics within speech. The addition of a smoothing algorithm to
the pitch tracks would provide a suitable estimate of pitch frequency for LPC synthesis.

The algorithm has performed well in both male and female speech, with only limited n pn‘on’
information. Although in this paper the stages of processing have been implemented se-
quentially - prediction, detection, selection - the algorithm can be implemented on-line with
statistical calculations being based on short term aracteristics over eight samples and long
term characteristics over a ew pitch pulses. This will enable further work to concentrate on
the incorporation of the pitch into the prediction model.
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