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SUMMARY

Recent studies of the active control of acoustic fields have used analytical methods and
multi-channel signal processing techniques that can be usefully applied to problems in
sound reproduction. This paper considers several aspects of the reproduction of sound.
First, the possibility is considered of the perfect reproduction of an acoustic field in both
space and time. Results from classical acoustics suggest a means by which this could be
achieved, but it is soon concluded that this is an unrealistic objective in practice. The
reproduction of a sound field over a restricted spatial region is also considered. Some new
results are presented which demonstrate that a field can be reproduced that closely
approximates the original by first recording the acoustic signals at a finite number of
positions in the original sound field. The signals are processed via a matrix of linear filters
in order to produce the inputs to a number of sources used for reproduction. An analysis
in the frequency domain shows that such a strategy could be useful, but its practicability
at high frequencies appears to be limited by the need to provide adequate spatial sampling
of the original field. Another approach that is considered is to concentrate on ensuring
that the direction of propagation of the waves in the original field are well approximated
in the reproduced field. This appreach appears to be a more practicable alternative, and
offers the premise of successful operation over a wide frequency bandwidth. Some
discussion is presented of the realisability of the optimal filter malrix and a practical,
adaptive, filter design technique is presented which has already proved successful in some
limited experiments. Finally, some further possibilities are suggested in which the same
principles are used to improve the quality of existing stereophonic sound reproduction
systems.

1. INTRODUCTION

Research into the potential of active techniques for the control of acoustic fields has
undergone a rapid expansion during the last two decades. This growth has paralleled the
expansion in the capability of modern electronic devices for the digital processing of
acoustic signals. The study of the subject has embraced both the "physical” aspects of the
problem (which, perhaps surprisingly, were only partly understood at the beginning of
the 1970's) and also the "lechnological” aspects of the problem. The latter have involved
the development and study of novel digital signal processing techniques required
specifically for the active control of sound. The fusion of the two subject disciplines of
"classical” acoustics and "modern™ digital signal processing has produced some exciting
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developments. Much of the work in this field that had been undertaken by the start of the
1990's is summarised in reference [1], which also presents a unified introduction to the two
contributing subject disciplines. Reference [1] does not, however, deal with recent
advances in what may be termed the active control of "structure-borne” sound. That is, the
control of wave fields in elastic solids and their interaction with fluid borne sound fields.
Much of the recent work in this area will be summarised in reference [2] and is also dealt
with in reference [3).

This paper will concentrate on further developments in the active control of acoustic
fields, but with a rather different objective in mind than that traditionally associated with
the subject. Most work to date has understandably been focused on the active suppression
of unwanted acoustic noise, where the "desired” sound field is simply a sound field whose
amplitude is of considerably lower amplitude than that associated with the unwanted
sound. In this work we will broaden the scope of the subject to include the production of
a sound field which has predefined spatial and temporal characteristics. The application
of interest in thus in the accurate reproduction of a given sound field rather than in its
suppression,

Naturally, there is already a vast literature that deals with the reproduction of sound, and
the subject continues to be of great technological interest in modern times, with
phenomenal strides having been made in the accuracy with which acoustic signals can be
recorded, stored and reproduced. Again, most of these recent advances have arisen
through the application of digital techniques and have come to fruition during the period
in which the active control of unwanted noise has become a practical proposition.
However, most of the work in the field of sound reproduction has been directed towards
the technological problem of accurate reproduction of recorded signals. Surprisingly little
attention has been devoted to assessing the extenl to which an acoustic field (rather than
just an acoustic signal} can be faithfully reproduced.

In this work an attempt will be made to assess this possibility, and in doing so, full use
will be made of the analytical techniques that have proved so useful in the study of the
active control of unwanted sound. Furthermore, some suggestions will be given for
practical realisations of systems for the reproduction of sound fields that make full use of
the multi-channel signal processing techniques that have also been widely used in active
noise control systems. Indeed, in signal processing terms, the suppression of a given
sound field and its reproduction turn out to be very similar problems.

2, THE PERFECT REPRODUCTION OF SOUND FIELDS

It is worth pointing out at the initiation of these discussions that the sound field within a
given spatial volume c¢an in principle be reproduced perfectly in both space and time,
given a complete description of the acoustic pressure and pressure gradient on the
hypothetical surface that bounds the spatial volume. This reasoning follows from the
Kirchhoff-Helmholtz integral equation which enables the sound field within a given
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Figure 1 An illustration of the possibilities for the perlect reproduction of sound.
Recordings are made of u{y1) and p(y,t) on a surface S enclosing
avolume V. The field is later reproduced in an identical volume V" by
using a cantinuous layer of monopole and dipole sources on a surface
§' that is geomelrically identical to S.
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volume V to be uniquely described by these acoustic properties on the bounding surface S.
Thus an acoustic pressure field p(x, 1) which satisfies the homogeneous wave equation

(v! -é %) px, 1) =0, m

in a medium with a sound speed &, can be described by the integral equation

pix, ) = %g} futy, t-R/c)} - naS

x-y)rd &
¥ 4nxzc;(§+i){P(Y-f-R/co>} .nds. @

In this expression, p, is the density of the medium, x is the position vector of the field
point contained within the volume V, the vector y defines the position on the surface §
that encloses V, the distance R = lx - y|and n is the unit normal vector that points into the
volume V from the surface 5. A full description of the derivation of this relationship is
given by Pierce [4]. Although not obvious from the form of the integral equation given
above, it is well known that the two surface integrals in the equation have a clearly
defined physical interpretation. The first term can be considered to be the contribution to
the sound field in V that is radiated by a continuous distribution of monopole sources
located on the surface S. The strength of the monopoles is deterimined by the particle
velocity distribution uly, !) on the surface. Similarly, the second integral can be
interpreted as the sound field produced by a continuous layer of dipole sources on the
surface S, their strength being determined by the pressure fluctuation ply, B (A
description of the physical reasoning that leads to these conclusions is presented in
reference [11.)

One can conclude from this well established principle of classical acoustics, that given a
complete knowledge of uly, #) and ply, t} on a surface 5 that encloses V, one could
perfectly reproduce pix, 1) inside V by activaling an appropriate distribution of monopole
and dipole sources on S. The possibility for reproducing a sound field in this way is
illustrated in Figure 1. Thus one records uly, ) and ply, 1) on § surrounding the volume V
of interest. Given these recordings, one can activate at a later time, and in a different
space, a continuous source layer on a surface 5 that is geometrically identical to the
surface S. This will result in the reproduction within V', of the sound field that previously
existed within V. Note that, as illustrated in Figure 1, in reproducing sound within V", no
field is reproduced outside V. This {obviously necessary) condition also follows from the
Kirchhoff-Helmholtz integral theorem, which shows that for field points x outside V,
equation (2) holds with p(x, ) equal to zero. Finally, of course one has to assume that both
poand ¢, are identical in ¥ and V",

46 Proc.l.0.A. Vol 15 Part 3 (1993)




Proceedings of the Institute of Acoustics

ACTIVE CONTROL OF ACQUSTIC FIELDS AND THE REPRODUCTION OF SOUND

However, variations in density and sound speed between V and V" are probably the least
of the difficulties involved in implementing such a scheme. The recording of signals over
a continuous surface and their subsequent use in activating a continuous source layer is
certainly not a current technological possibility. Nevertheless, accepting that both
recording and reproduction must be accomplished with discrete transducers, it leads one
to speculate upon how closely this scheme could be realised in practice. Previous work on
active noise control has gone at least some way to answering this question. This is
reviewed in reference [1] (see Chapter 9, Section 9.14). Considerable work on the
discretization of continucus scurce layers has been undertaken by Soviet authors (see, for
example, Zavadskaya ef af [5], Konyaev et al [6). and Konyaev and Fedoryuk [7]).
Although not entirely conclusive, the work of these authors, together with the analysis
presented in reference [1], suggests that the linear separation between discrete
monopole/dipole source elements used to approximate a planar continuous source layer
should not be greater than 4/2, where 4 is the acoustic wavelength at the frequency of
interest. Applying this argument to the reproduction of a field inside a spherical volume
whose diameter is D suggests that one would require approximately 4nD2/A2 discrete
source elements. Thus for a sphere 10 m in diameter and a frequency of 10 kHz
{1 =3.44 % 1072 m in air at 20 °C), in excess of 108 sources would be required! However for
a sphere of 1 m in diameter and frequency of 1 kHz, this number drops to around 102. To
adopt this philosophy, even for modest volumes and frequencies, represents a task of
considerable comptexity.

3. REFRODUCTION OF A SOUND FIELD OVER
A RESTRICTED SPATIAL REGION

The discussion of the last section suggests that the perfect reproduction of a sound field
over a large spatial volume is not a currently realistic aim, even with the rapidly
advancing technology at our disposal. The question then arises as to how existing
capabilities might be best utilised to improve, in some sense, existing sound reproduction
techniques. Here attention will be initially restricted to the objective of providing a single
listener in a given "listening space” {see Figure 1) with an incident acoustic field that
matches, as closely as possible in space and time, that sound field which would have been
incident upon the listener in the "recording space”. In simple terms this is the age-old
objective of reproducing a restricted region of the concert hall sound field in a restricted
region of the living room. The region in question is, of course, that which surrounds the
listener.

An obvious starting point for an appraisal of this possibility is to undertake an analysis in
the frequency domain. In fact, the approach taken here is exactly that which has already
proved so useful in defining performance limits in the study of the active control of sound
[1]. Here the definition is sought of the "optimal” outputs of a number of discrete acoustic
sources which give, in a least squares sense, the "best fit” (in amplitude and phase) to a
desired single frequency sound field. Whilst there are limitations to the extent to which
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Figure 2 Reproduction of a plane wave sound figld. The strengths of the
sources are optimally adjusted to minimise the error between the
recorded signals and those reproduced at equivalent locations in the
listening space.
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conclusions arrived at in the frequency domain can be extended to the time domain, this
type of analysis invariably leads to a useful assessment of the "best that can be done”.

First it will be assumed that the sound field in the "recording space” consists of a single
plane wave at an angular frequency @. Second, it is assumed that an array of discrete
transducers is used to record this sound field. For the sake of simplicity it will be assumed
that the transducer array and the plane wave are restricted to the horizontal plane as
illustrated in Figure 2. The optimisation problem and its subsequent interpretation in
terms of a signal processing problem is best described with reference to Figure 3.

It is assumed that the K transducers detecting the harmonic plane wave in the recording
space produce harmonic signals described by the complex numbers wy(w) which comprise
the complex vector u{w). The objective is to reproduce these signals as closely as possible
at the equivalent locations in the listening space. M sources are used to reproduce the
field and their "input" signals are described by the complex numbers vm(w) which

comprise the complex vector v{a). These sources produce signals @(w) at L locations in,

the listening space, these signals comprising the vectord(w). Here it will be assumed that
the L locations in the listening space are geometrically equivalent to the K locations of the
recording transducers in the recording space such that K = L and that d{e) = u(@). Thus
the desired signal vector is exactly the recorded signal vector. In general, it is useful to
define the desired signals d{w) in terms of the recorded signals u(ew) through the more
general relationship d(w) = A{w} u(w). Here of course it is assumed simply that A(e) =1,
the identity matrix.

One can now find the signal vector v(w) which minimises the sum of squared errors
between the desired and reproduced signals. The quadratic cost function that is to be
minimised is given by

] (@) = eH(w) e(w) + f () v(w), 3)

where the complex error vector e{w) = d{w) - d(w). The cost function thus consists of the
sum of the squared errors eH{w) e(w) plus the sum of squared source input voltages
vH{w) v(e) mu]tlphed by the faclorﬁ The term fi thus quantlftes the relative weighting in
the cost function given to the "effort" used in minimising the sum of squared errors.
Equation (3) can be expanded to give

Ji) = vH(e) [CH(w) Clw) + B1] v(e) - dH(w) Clw) viw)
- vH(w) CH{a) d(w) + dH(e) d(w). @

Since [(CH(w ) Clw ) + fj must be a positive definite matrix (i.e.

vH(@)CH{w) CH(@) + B I] v(w} > 0 for all v() = 0), then this function must have the
unique minimum defined by (1]
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Figure 3

d desired
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—t error
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source input reproduced
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The sound reproduction problem in block diagram form. The vector
u is a vector of recorded signals, v is a vector of signals input to
the sources used for reproduction and d is a vector of signals
reproduced in the sound field. The vecter d defines the vector of
signals that are desired to be reproduced and e = d -d is a vector
of error signals. The matrix C defines the transfer functions
between v and d, and the matrix H defines a matrix of filters
which are used to operate on the recorded signals u in order to
determine the source input signals v. The matrix A is used 10
difine the desired signals d in terms of the recorded signals u.
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volt) = [CH(@) Clad + 1] CH(w) dla), (5)

Jole) = dH(w) [1 - Clew) [CH(w) Cl) + B1] CH(m)] d(w), (6)

where v,(w) is the cptimal vector of source input signals and J,{(w} is the minimum value
of the cost functien.

This analysis has been used by Kirkeby and Nelson [8] to investigate the effectiveness of a
number of geometrical arrangements of recording and reproducing transducers. One such
specific arrangement is illustrated in Figure 4. This consists of an array of four (point
monopole) sources spaced on a 90° arc. The recorded signals u{w) are assumed to be those
preduced by a harmonic plane wave travelling at an angle 8 to the x;- axis of the
coordinate system. The complex pressure produced by such a wave can be written as

play=e ~jw (xycos 8+ x3 sin B/ cy s (7)

where w/¢, is the wavenumber and the wave is assumed to have unit amplitude. Thus it -
is assumed that the recorded signals (and thus the desired signals) are given by

u{e) = dyla) = g-jor(xjcos 8+ x7, sin Sl,fro’ (8)

where the position of the k'th recording sensor is defined by the coordinates (r1g, x2:). In
reproducing the sound field, we assume that the elements of the matrix C (@) of frequency
response functions are given by

¢ “jwRIm/cy
Cimla) =PG4TM, C)]

where Ry, is the distance between the I'th point at which reproduction is scught and the
m'th source used for repreduction. It is thus assumed that the reproduced signals are
exactly the sound pressure fluctuations that would be produced by point monopole
soutces having volume accelerations equal to v,(w), the source input signals.
Furthermore, it is implicitly assumed that the listening space is anechoic,

4. RESULTS OF THE FREQUENCY DOMAIN ANALYSIS

Some results of using the solution given by equations (5) and (6} with B = 0 and with the
arrangement shown in Figure 4 are illustrated in Figure 5. This shows the value of
(Jo/L0/?, where L = K is the total number of recorded signals (64 in this case) as a function
of frequency and the angle of incidence @ of the plane wave. First note that for angles of
incidence within the range 45° to 135°, the normalised error always remains reasonably
low. This range of incidence angles of course lies within the angle subtended at the ongm
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Figure 4 The geometry of reproducing sources studied by Kirkeby and
Nelson [ 8. The (x4, x3) coordinate positions of the reproducing
sourges are shown. The recording transducer array was a 0.5m x
0.5m square centred on the origin and contained 8 x B transducers
spaced on a uniform grid.
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of the coordinate system by the array of sources. The normalised error is also obviously
smallest when the angle of incidence of the plane wave coincides with the angle
subtended by each of the individual sources. There is also a general trend of increasing
error with increasing frequency and at high frequencies especially, as one would expect,
the normalised error rapidly approaches unity outside the range of incidence angles
subtended by the sources.

Figure 6 shows a plot of the "total effort” (v,H(w) v,(&))1/2 used by the sources, this being
the square root of the sum of the squared moduli of the optimal source input signals. This
shows that in the low frequency range (< 500 Hz), the sources will make a large effort to
reprociuce the field for angles of incidence outside that subtended by the sources. This is
clearly an undesirable effect. However for frequencies above 750 Hz, the sources
effectively "turn off” for incidence angles outside the range subtended by the sources.
Figure 7 shows a plot of the individual source input signals for a frequency of 1 kHz.
Clearly, as the angle of incidence of the plane wave varies the sources vary in strength in a
well defined and “reasonable” way, with the sources closest to the plane wave angle of
incidence producing most of the output.

Figure 8 shows a plot of the condition number of the matrix CH{(w) C{w) + S which has to
be inverted to find the optimal sotution. This condition number is the ratio of maximum
to minimum eigenvalue of the matrix and gives a measure of the sensitivity of the solution
to small changes in Clw). At low frequencies, the solution becomes badly conditioned,
with the matrix CH() C(w) close to becoming singular when § = 0. Thus, as one might
expect, when the acoustic wavelength is much longer then the separation between the
sources, two columns of CH(w) Clw) can become very similar and the determinant of the
matrix can approach zero (see the discussion presented in Chapter 12 of reference [1]).
Also shown in Figure 8, however, is the variation of condition number as § is increased
from zero. This shows how the matrix to be inverted becomes increasingly well
conditioned as B is increased. The values of 8 used are quite small, and upon writing fas
the product e(trace CH(w) C(w)), the results show that values of £ of only 0.001 have a
profound influence on the conditioning of the matrix.

Finally, as an example of how successful the least squares solution can be in defining
optimal source strengths for reproducing the field, Figure 9 shows the amplitude and
phase contours of the reproduced field when the recorded signals were due to a 500 Hz
plane wave at an angle of incidence 6 = 90°. The field is reconstructed remarkably well
over the region in which the recordings were made.

Clearly, however, a large number of recording sensors have been used in the example
presented above and Lhe question naturally atises as to the influence that the sensor
density has on the quality of the reconstruction. The work presented by Kirkeby and
Nelson [8] has shown that, reughly speaking, the density of sensors must be sufficient to
ensure that the sampling theorem (9] is satisfied for the highest “spatial frequencies” of
interest. Thus provided that at least two sensors are used per acoustic wavelength, the
sensor density has very little influence on the least squares solution. Thus for the example
Proc.l.O.A. Vol 15 Part 3 (1683) 53
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V(@)
(linear scale)
6 (degrees)
Figure 7 The individual source input signals when the plane wave sound field is

reproduced using the source array shown in figure 4 at a frequency of
1000 Hz 000 v4(@) 00O vo(W0) -+9% Vi{w} e vy(w)
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Figure 8 The condition number (ratio of maximum to minimum eigenvalue) of

CH(w) C(w) as a function of frequancy when the field is reproduced
using the arrangement of figure 4. Note the improvement in low
frequency conditioning when € (proportional to B) is increased.

Proc.L.O.A. Vol 15 Part 3 (1993) 57



Proceedings of the Institute of Acoustics

/

ACTIVE CONTROL OF ACOUSTIC FIELDS AND THE REPRODUCTION OF SOUND

b)

Figure 9

'2 -1 0 1 2 X‘|(m)

2 xi(m)

Contours of constant (a) amplitude and (b) phase of the
optimally reproduced sound field when the recorded sound field is
due to a 250 Hz plane wave at 8 = 90°. The source arrangement
is that shown in figure 4.
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presented above, the array of 64 sensors were replaced by an array of 4 sensors (at the
comners of the 0.5 m square) and there was found to be very little increase in the mean
square error for frequencies below about 400 Hz. It therefore appears that there are
conflicting requirements in the design of a practical sensor array. If the linear dimension
of the zone over which reproduction is sought is given by D, then the number of sensors K
required to record the signals will be given approximately by K = (1 + D/d) 2. If the sensor
spacing d = Amin/2 where A,y is the acoustic wavelength at the highest frequency of
interest fmax. then it follows that K = (1 + 2 fnay D/c;)2. Thus if D = 0.5 m and
fmax = 10 kHz, then K = 500; it is clearly unreasonable to attempt accurate spatial
reproduction for such high frequencies over such a relatively large area. :

5. REPRODUCTION OF THE PROPAGATION
DIRECTION OF RECORDED WAVE FIELDS

The analysis of the last section has demonstrated that there are distinct limitations to the
degree to which a sound field can be accurately reproduced even over a relatively small
spatial region. A more modest objective, that can be investigated within the same
analytical framework, is that of attempting to ensure that the directional properties of the
sound field at a point {or small region of space) are preserved in the reproduced field.
Thus, simply speaking. one wishes to record the field with a number of sensors close to
the point of interest and process those signals such that the direction of propagation of the
waves is, as far as possible, reproduced at an equivalent point in the listening space. This
objective is central to the operation of "surround sound" or "ambisonic™ [10] systems. Here
it will be shown that the least squares solution given above automatically ensures that
directional information wili be well reproduced.

Consider the geometry illustrated in Figure 10. This shows a reproduction system which
uses 12 loudspeakers to surround a central array of 16 sensors spaced uniformly on a grid
that is only 0.045 m square. Assume that these sensors record signals due to a harmonic
plane wave at an angle 8, exactly as described in Section 3. The source inputs v(w)
necessary to ensure that the cost function J{ew) is minimised can again be calculated by
using the solution given by equaticn (5). The results are shown in Figure 11 which shows
the modulus of the signals vy,(w) for just one source and for all the sources as a function of
the angle of incidence @ of the recorded plane wave. Results are presented at frequencies
of 100 Hz, 1 kHz and 10 kHz. The important feature of these results is that whatever the
frequency or angle of incidence of the recorded wave, it is always the source closest to this
angle of incidence that produces the dominant output. For waves whose angle of
incidence falls exactly between two sources, then the two sources have roughly equal
outputs, these being greater than those of any of the other sources. The least squares
solution therefore always ensures that the recorded sound will at least be radiated from
the correct direction in the reproduced field. A small value of 8 (given by £ trace
CH(w) C(@) with £= 0.001} was used in order to improve the conditioning of the sohition.
As shown by the results illustrated, at 100 Hz, the solution "blows up” at low frequencies
with = 0. There is clearly scope for further investigation of the number of sensors and
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Figure 10 The geometrical arrangament of reproducing sources and recording

transducers used for investigating the effectiveaness with which the

" direction of propagation of the recorded plane wave can be
reproduced. The recording transducer array was a 0.045m x
0.045m square centred on the origin and contained 4 x 4
transducers spaced on a uniform grid.
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b)
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Figure 11 The output of the sources in the reproduction system illustrated in
Figure 10 as a function of the angle 8 of the incident plane wave.
results are shown in the form of |vm(w)| as a polar plot on a linear scale
for all the sources in the array and for a single source in the array. At
a) 100Hz with € =0, b) at 100Hz with € = 0.001, c) at 1kHz with
€=0.001, d) at 10kHz with £=0.001,
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sources necessary in such a system to ensure the most accurate reproduction of directional
information with minimum processing power.

6. FREQUENCY DOMAIN CHARACTERISTICS
OF THE OPTIMAL FILTERS

The frequency domain derivation of the source input signals necessary for optimal
reproduction of the sound field can also be interpreted as a technique for designing a ‘
matrix of linear filters which is used to operate on the recorded signals in order to produce

the source input signals. This can most easily be understood with reference to Figure 3:

the filter matrix H operales on the recorded signal vector u in order to produce the source ‘
input signal vector v. Here the realisability of the filters in this matrix will be considered,
again by using an analysis in the frequency domain. However, it will prove convenient to
assume that the filters operate in discrete time on sampled input signals. The frequency
domain cost function to be minimised can be written as

Jiei @) = eHig ) e(e®) + B vHide vig ™, (10)

where e(g®) and v{¢/®¥) are vectors containing the Fourier transforms of the sampled error
signals and sampled source input signals. It follows that the minimum value of this cost
function {see equation {5)} is preduced by the source input vector

vole®) = [CHtgw) o) + B1]7 CHEg) dtdm. an

This therefore relates v,(e/®) to the desired signal vector d{gf@). However, according to
Figure 3, the vector d{g®)} is related to the recorded signal vector u@d®) by

@) = Alei®) ulg®) where the filter matrix A{/®) can be chosen at will. It therefore
fallows that

vole® = [CHE@ o) ey + B 1] CH®) Al uteien. 12

If it is now assumed that the optimal source input signals v,(¢/¢) are produced by
operating on u /) with a matrix of “optimal filters" Ho{&/) such that

Va(dlw) = Ho(f}w) u(dlw), (13)

then it follows that the optimal filler matrix is given by

Hy(ef®) = [CH{9) C(dv) + B1] 7 CHg®) Aleie). (14)
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For the purposes of appraising the realisability of the filters in this matrix the substimation
z = e/®will be made, where z is the z transform variable. It will also be assumed that the
transfer functions Cyy,(2) relating the signal at the Ith location in the reproduced Ffeld to
the m'th source input has the form .

Pz bim
Crml2) = iRy, (15

where Ay is the number of samples of delay produced by the acoustic propagation from
the m'th source to the I'th field location; the transfer function is again simply that which
relates the pressure at the field location o the volume acceleration of the scurce. For the
purposes of this analysis it will also be assumed that Ay, is always an integer number of
samples delay.

A particular geometry consisting of 2 sources and 3 sensors is studied in detail in
Appendix 1. It is demonstrated there that the causality of the optimal filters can be
ensured by choosing the matrix Az} to consist of a diagonal matrix of "modelling delays”
of A samples duration such that Az} = I z-8. The mX'th element of the matrix H(z) takes
the general form

Hypplz) = azde
milz ‘[1 — bzB1 = fyz-B2 | sz‘ﬂN]

frmi(z) 278, (16)

Note that the term in the square brackels is common to all the elements of H and is given
by 1/detlCH(z) C(z) + B I]. It is demonstrated in Appendix 1 that the inverse of this
determinant ¢an be expressed in this form, where A4, is the largest positive value of
exponent of z that results from expanding the determinant. The order N of the
denominater polynomial in equation (16) is given by M x K. Evaluation of the adjoint of
the matrix [CH(z} C(z) + §1] produces elements fpi(z) of this adjoint matrix which have the
general form

fmilz) = a1 281 + a9 282 aj 281, an

If A4 denotes the maximum positive value of any of the A; appearing in any of the
elements fy(2) of the adjoint matrix, then it is clear that all the filters comprising H{z) can
be made causal by choosing the modelling delay A such that A > (Aadj - Adet).

The stability however of all these filters is determined by the denominator polynomial in
equation (16). Thus all the zeros of this polynomial {the poles of the system) must lie
within the unit circle in the complex z—plane. However, the particular form of the
determinant of the matrix [CH@E)C() + fi] suggests that any system designed in the
frequency domain, which uses more sensors for recording than sources for reproduction,
will not yield a stable system in the time domain. In the particular case of 3 sensors and 2
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source 1 souree 2

@ o——@—
-1 2 0.1 1 xa(m)

Figure 12 The two source/three sensor geometry used in the study of the
stability of the optimal filters, The sources and sensors are all
situated on the x, axis in the coordinate positions shown. The

positions of the system poles in the z-plane are also shown. Note
that for every pele inside the unit circle, there is a pole outside.
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sources that is examined in detail in Appendix 1, note that equation (A1.6) can be written
in the form

detiCHEzC@) + A1l = ¢ + ¢ @24 n:z(z"d2 +27 4 £3(z™2 +2Y, (18)

where the delays 4y, d3 and 44 are defined by equations (A1.7). This particular form of the
denominator pelynomial has zeros {and thus poles of the system) which are arranged in
pairs, with each zero inside the unit circle in the z-plane being associated with a zero

outside the unit circle. Thus for any zero of equation (18) in the z-plane at z = ryei®, there

will also be a corresponding zero at z = (1/ry)e'%, i.e., at the conjugate reciprocal location
in the z-plane. That this must be so follows directly from the form of equation (18) which
still helds if z is replaced by (1/z*). A two source-three sensor geometry is illustrated in
Figure 12 together with a plot of the z-plane showing the corresponding zeros of equation
(18). These zeros are thus the peles of all the filters H,;(z); the existence of poles outside
the unit circle implies that all the elements of H(z) will be unstable. This alse appears to be
the case for any system which involves inversion of the matrix CH(z)C(z), since this
product seems always to result in a determinant having the general form of equation (18).

It also appears, however, that a system which uses the same number of sources and
sensors can be made stable, depending upon the geometry chosen. For example, in the
case of a 2 source-2 sensor system it can readily be shown that the filter matrix H(z) can be
made stable (and causal) when the optimal value chosen is simply given by
Hy(z) = C1(z)A(z), again depending on the choice of geometrical arrangement. Although a
thorough investigation of the realisability of the optimal filters has yet to be undertaken,
preliminary investigations also suggest that “square” systems consisting of 4 sources and 4
sensors can also be made stable.  However, the general rules governing the choice of
geometry have yet to be established. In cases where the frequency domain analysis
suggests that the filters required are unrealisable, it is still always possible to seek a "least
squares” solution to the problem in the time domain. This involves finding the filters that
are constrained to be causal and stable and which minimise the mean square error
between the desired and reproduced signals. This approach is discussed in the next
section.

7. PRACTICAL FILTER DESIGN METHODS; FIR FILTERS

Whilst the analyses of the previous sections have succeeded in throwing some light on the
nature of the filters required for the processing of the recorded signals, filters designed on
a purely analytical basis will not make use of the full capability of modern signal
processing techniques. The very considerable drawback associated with the direct
application of the theory outlined abave is, of course, that it assumes both ideal sources for
reproduction and an ideal {anechoic) response of the listening space in which the sound is
reproduced. Both of these factors can, in practical applications, be compensated for by
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using a simple on-line filter design procedure. Thus, the effective inversion of the "on-
axis" frequency response functions of the loudspeakers used for reproduction can be
accomplished relatively easily [11]. The effective inversion of the response of the space in
which the sound is reproduced can also be accomplished, at least on a pointwise basis [12] |
but it is perhaps debatable whether in the majority of applications this is a worthwhile |
procedure. It is well known that human hearing exhibits a well-defined "precedence
effect” [13] and localization of sources will very much be determined by the earliest
arriving sound. In some cases therefore, it may be of benefit simply to disregard the
response of the listening space and focus effort on obtaining accurate reproduction of the
recorded signals by using the direct field radiated by the sources used for reproduction.

In an event, it is in principle relatively easy to deduce the matrix H of optimal filters by
using the recorded signals and by making measurements of the reproduced field, the latter
being undertaken either under anechoic cenditions or in the listening space to be used. It
is firstly assumed that the matrix H consists of FIR filters. Thus although the analysis of
the previous section has demonstrated that H has an intrinsically recursive structure, it is.
assumed that a sufficient number of coefficients are used in each of the elements of H to
ensure that their impulse responses are of requisite duration.

The analysis presented below follows that in reference [1]. First the "filtered reference
signals” are defined. These are the signals generated by passing the k'th recorded signal
udw) through the transfer function Cin{w) which comprises the | m'th element of the
matrix C{w). This signal is denoted ru{w). The generation of the filtered reference signal
can be explained with reference to the block diagram of Figure 3. Since the system is
linear, the operation of the elements of the transfer functions H(w) and C{w) can be
reversed. This is illustrated in Figure 13. In discrete time, the sampled signal reproduced
at the I'th location in the sound field can be written as

K M
dn) = Y ¥ stmin), {19
k=1m=1

where the signal spa(n) is defined by

i-1
St} = 3 i) P = i), (20) -
i=0
and hpidi) is the i'th coefficient of the FIR filter processing the k'th recorded signal to
produce the m'th source input signal (see Figure 12). Each of the FIR filters is assumed to

have an impulse response of I samples in duration. Thus the signalt?;(n) can also be
written as
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k() Sppx{w)
—1 Cniw) Hy ()
F(©)
u(w) Cplw) Hay(w)
P ()
— Cmiw) Hyy {0}
Figure 13 The reversal of operation of the elements of the matrices H{w) and

C{w) which leads o the definition of the filtered reference signals
Fpvk(w) and the filtered output signals spyi(w). Note that d,(w}
consists of contributions due to ali K recorded signals.
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K M

A=Y ¥ hul rimn), 2n
k=1m=1

where the vectors hyy and rpi{n) are defined by

e =[h,,,,((m Foud1) h,,,gz)....h,,,ku-n], (P}

kT (1) = [r1mk0) 1okt = 1) P = 2) . il =T+ 1) ] 23)

The following composite vectors are now defined

hT = [huT hiaT . T oy T haaT . hoxTHL T bt . .hqu, (24)
Tiln) = [nuT(n) Lok |r121T(n) e r;sz(nH .. lrleT(n) r;MKT(n)],
25
qT(m = [ oty ... .. @], (26)
together with the matrix
R¥{n) = [r1(n) nn).. ...rL(n)]. 2N

These definitions are used in Appendix 2 to find the solution for the optimal set of
coefficients in the composite vector h that minimises the time averaged sum of squared
errors between the desired and reproduced signals. The cost function minimised is given

by ‘
] = E[eT(m) etn) + BvT(n) v(n)], (28)

where the error vector e() = d(#) - d(#) and the second term in the cost function weights
the effort associated with the source input signals. It is demonstrated in Appendix 2, that
if all the recorded signals comprising the vector u(n) are assumed to be mutually
uncorrelated white noise sequences with a mean square value of 62, then equation (28)
reduces to the form :

j= hT{E[RT(n) R(n)] + fo 1] h -2 E[6T(n) R(m) ha E[aT(m d(m). (29)
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The positive definiteness of the matrix {E [RTe) R + B a? l} ensures the existence of a

unique minimum of this function. This is defined by the optimal composite tap weight
vector and associated minimum value of | given by

ho= {E[RT( Ren)] + B2 1} E[RT() dim], 30)

Jo= E[d70n dew]- £[aTon Rin)] {E[RTr R} + o2 1} E[RTOndm]. @D

Equation (30) therefore defines the optimal values of all the coefficients in the filters that
comprise the matrix H. One way to determine these coefficients is obviously by direct
inversion of the matrix in equation {(30). However this matrix is clearly of high order,
being of dimension I x M x K. Another approach is to use the LMS algorithm, extended
for use with multiple errors by Elliott and Nelson [14,15). It is demonstrated in Appendix
2 that the algorithm can be written in the form

hin + 1} = yh(r) + ¢ RT(n}el(n) , (32

where a is a convergence coefficient and 7 is a "leak coefficient” whose value js directly
related to the penalisation of effort associated with the parameter f.

8. THE APPLICATION OF AN FIR FILTER MATRIX

The above on-line filter design technique has been used successfully in the practical
implementation of a system for reproducing signals recorded at two points in space by
using two sources for reproduction [16]. Full details of this "cross-talk cancellation
system” are given in reference [16) together with measurements of the spatial effectiveness
of the technique. Some other examples of the application of this filter design method are
also presented in reference [17]. As a further illustration of the use of this least squares
technique in the time domain, it has been used in a computer simulation to design a
causal, stable realisation of the filter matrix H used to operate on the signals recorded by
four sensors in order to provide the inputs to four sources used to “reconstruct optimally”
the direction of arrival of the waves in the region in which the recordings were made.
Note that the four sensors are placed in a square array of dimension 0.1 m, as illustrated in
Figure 14. The effective sample rate used was 34 kHz. This enabled the matrix C{z) to be
approximalted to good accuracy by transfer functions of the form of equation (15) with Ay,
given by the closest integer value to R, /¢y, where ¢g = 344 m/s. The delays Apy, were
thus all in the range between 270 and 290 samples and the matrix A(z) was assumed to be

LIz-4 with the modelling delay A set equal to 350 samples. Each of the filters in H(z) was
assumed Lo have 128 coefficients.
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x2{m)

Source 1(-2,2) @ @ Source 2 {2, 2}

Ty
1o

x1(m)

Source 3 (-2, -2} ® d Source 4 (2,-2)

Figura 14  The geometrical arrrangement of reproducing sources and recording
transducers used for the design of a causal, static realisation of the
optimal fiter matrix H. Four sources were used in the coordinale
positions shown together with four sensors spaced 0.1m apart on a
square grid.
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Figure 15 The impulse responses of four of the optimal filters designed using

the geometry of Figure 14. The impulse responses are shown
corresponding to a) Hyy (2) b) Hyp(2) €} Hy3(2) d) Hyy(z).
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Figure 15 shows the impulse responses of the filters Hyy(z),Hy3(2), Hy3(2) and Hy(z): ie,
the filters that operate on the four recorded signals 1 1(n) to #4(n} and whose outputs are
added together to produce the signal v, () input to source 1. Having designed these filters
by using the algorithm in equation (32), their effectiveness in producing the appropriate
value of vy(n) was evaluated by assuming that the recorded signals u;{n} to u4(n) were
produced by plane waves falling on the sensor array at an angle 6 (Figure 2). The waves

were assumed to produce a while noise sequence, with a power spectral density of unity,
the same sequence being recorded by each senscr but all differing by delays that are a
function of only 6. The power spectral density 5,y (©.8) of the sequence y(n) could then

be calculated from
Sp vy 2,8) =

: o 2
Hy(eforeion(6) 4 Hyp(e/ Peieto®) 4 1, (ef@)ej@830) 4 H (e 9)ej024(8) |
(33)

whare A{8) to A4(6) are the delays (in integer numbers of samples} produced in the white
noise sequence recorded by the sensors when the incident plane waves arrive at an angle
6. Figure 16 shows 5,4, (@.6), the power spectral density of the input signal to source 1,

as a function of both frequency and the angle of incidence & of the recorded waves.
Clearly at very low frequencies (30 Hz), the source produces an output irrespective of 6,
which one might anticipate when the distance between the sensors is very small compared
to the wavelength of the incident field. At frequencies up te about 1500 Hz the source
only produces an output for waves falling in the range of angles of incidence which can
effectively be reproduced by the source. Above this frequency, the effect of inadequate
spatial sampling of the field becomes apparent and the source will produce an output for
waves having angles of incidence that the source cannot hope to reproduce. These results
again emphasise the requirement to comply with the sampling theorem by having the
recording sensors spaced apart by less than one half (and preferably one third) of an
acoustic wavelength at the highest frequency of interest. Nevertheless, the results show
considerable promise and the technique clearly offers scope for refinement.

9, PRACTICAL FILTER DESIGN METHODS; IIR FILTERS

Whilst the adaptive design of FIR filters is clearly a successful approach to the problem,
since the filters required are intrinsically recursive, one is also led to consider the use of
adaptive recursive filters. These offer considerable scope for improvements in the
efficiency with which the filters can be implemented. There are, however, difficulties
involved in their design. There are essentially two classes of adaptive recursive filter;
“output ertor” and "equation error” types (see the review by Shynk {18]). The application
of these classes of filter is considered in Appendix 3 and Appendix 4 respectively. In the
case of "output error” adaptive filters one simply replaces each of the elements of H with a
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Figure 16
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f=30Hz B} 20 = 180H2
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f = 800Hz 4 00 f=1730Hz

The power spectral density of the sequence v,{n} input to source 1

of Figure 14 when plane waves producing a white noise sequence
is recorded by the four sensors shown in Figure 14 and processed
using the optimal fiter matrix H. The power spectral density is
shown as a polar plot as a function of @ on a linear scale at a) 30Hz
b) 180Hz c¢) 800Hz d) 1730Hz.
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recursive filter. It is shown in Appendix 3 that, by making some fairly gross assumptions,
an algorithm can be derived that is directly analogous to that given by equation (32). This
amounts to the multi-channel generalisation of the simple algorithm presented by
Feintuch [19] which was firsl generalised for use with multiple errors by Elliott and
Nelson [20}. However the use of filters with this architecture does not guarantee either the
existence of a unique minimum or a stable convergence. A more attractive alternative is
that described in Appendix 4 in which is used the "equation error” approach together with
the filter architecture illustrated in Figure 17. In this case all the filters are assumed to
have common poles, consistent with the analysis of Section 4. In addition, the quadratic
cost function minimised has a unique minimum, although there may be problems with
bias in the solutions reached, especially if high levels of noise are present.

As shown in Appendix 4, one first defines the coefficients of each of the filters A, and B
illustrated in Figure 17 by

AT = [0hl0) Bynil1) 82D Bl - 1), (34)

bT = [B(D) B(1) B(2) ... W] - 1)). 35}

A composite vector of coefficients is then defined (analogous to h defined by equation
(24} such that :

BT = [a”T alzT a”(T | az]T azzT aszl | a,mT aMZT"' aMKTI bT] (36)

Similarly, by anaiogy with the definition of ry(n) given by equation (23}, one defines the
composite vector

QT (n) = Irgy T @) -y kg TG TG | Frgagy O L ppppp T} AT )],
(37)

and the matrix Q(n) (by analogy with R{)) such that

QT(n) = [q;(m) qo{m) .. qu{m). (38}

The composite vector of coefficients g is then found that minimises the cost function

] = Ele,Ttnle,(n) + BvT{mvin)], (39)

where e,(n) is the "equation error” vector defined by

e n) = din) - Qln)g. (40)

As argued in Appendix 4, an algorithm which can be used to minimise the cost function
defined by equation (39} is given by
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Figure 17 The “reversed transfer function" form of the block diagram when the

elements of H are implemented as recursive filters. All the filters are
given identical recursive parts as shown in (a) which enables the
block diagram to be redrawn as in (b).
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gln+ 1) = yg(n) + oQT(nde,(n} . (41)

which is clearly analogous to equation (32). Initial simulations of this algorithm have been
undertaken and demonstrate that the algorithm can be made to converge, but its
advantages in efficiency of filter implementation have yet to be clearly demonstrated.

10. IMPROVEMENT OF EXISTING STERECPHONIC
SQUND REPRODUCTION SYSTEMS

In all of the strategies discussed above it has been assumed that in order to reproduce a
given field, a number of measurements can be made of that field in order to provide the
requisite information for the recorded signal vector u. It has to be faced, however that
virtually none of the existing techniques used for sound reproduction use the methods
described. The vast industry involved in recording and reproducing sound relies almost
exclusively on the conventional approach to "intensity sterec”. Thus particular signals are
attributed to the two channels of a given stereo recording in order that the relative
intensities radiated by two loudspeakers gives an impression that the source of the
original signal is located in a certain position. However, as described by Moore [13], the
benefits of stereophonic reproduction (as compared to monophonic reproduction} are
more connected with improved clarity and definition of the original signals, rather than
with localisation of the original sources, which is often quite imprecise. It is quite well
established, however, that the benefits afforded by conventional stereophony are
degraded when the listener is not located centrally on the axis that bisects the two
loudspeakers. This degradation is largely due to the operation of the precedence effect; as
the listener moves closer to one loudspeaker, the sound radiated by that loudspeaker will
arrive at the listener before that radiated by the other loudspeaker. If the time disparity
between the two signal arrivals exceeds 1 ms, the sound will appear to originate
exclusively from the nearest loudspeaker. Moore [13] calculates that deviations of greater
than about 60 cm from the central position, will, under normal listening conditions, result
in "significant changes in the stereo image".

There are a number of practical situations where a listener is constrained to be in an off-
central "non-ideal" listening position. The loudspeakers used for stereophonic
reproduction in a car, for example, are by necessity, very often located asymmietrically
with respect to the driver. It may be useful to note, therefore, that the general formulation
presented above can be employed to design a matrix of filters that operates on
conventionally recorded stereo signals in order to compensate explicitly for the non-ideal
positions of loudspeakers relative to a listener. The approach taken is to specify the
geometric position of a pair of "virtual sources” relative to a listener in a given position.
The virtual sources are in an ideal position relative to the listener. The desired signals are
then those which would be produced at the ears of the listener by the virtual sources. This
automatically allows the specification of the matrix A which relates the recorded signals to
the desired signals. The recorded signals are the two channels of the conventionally

76 Proc.l.O.A. Vol 15 Part 3 (1983)




a)

b)

Figure 18

Virtual .
source 1 Source 1
]

(-0.58,1) (-0.26,0.97)

Proceedings of the Institute of Acoustics

ACTIVE CONTROL OF ACOUSTIC FIELDS AND THE REPRODUCTION OF SOUND

m

x2(m) Virtual
Source 2 Ssource 2

-+ ® &

(0.26,0.97) {0.58,1)

x1{m)
0.2m
Virtual xa(m) Virtual
source 1 Source 1 Source 2 source 2
® L ]
{-0.58,1) (-0.52,0.97) (0,0.87) {0.58,1)
o—1—0—
x1{m)
0.2m

Examples of two geometrical arrangements of real and virtual
sources. The matrix A is specified In terms of the geometry of the
virtual sources relative to the ears of a listener.
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recorded stereo signals and the elements of the matrix A are simply the transfer functions
of the transmission paths from the virtual sources to the ears of the listener. Thus, with
reference to the geometry illustrated in Figure 18, working in discrete time allows the
matrix A{z) to be written as

=811  z7A2]

Pe| R1 Rn
A(2)=4n 82 622 | (42)

Rz Rz

where it is again assumed that the acoustic travel times are an integer number of samples
Aj. Having specified the desired signals in terms of this matrix, it is possible to determine
the 2 x 2 matrix of filters H which is used to operate on the two channels of the
conventional stereo recording. The two outputs of this filter matrix are the input signals o
the two sources. The question then arises as to the spatial effectiveness of this technique.
It is certainly possible to produce very close approximations to the desired signals at the
two specified points, but one is clearly interested in evaluating the spatial extent of this
effect as one moves to other positions in the sound field.

The results of computer simulations designed lo evaluate this are shown in Figure 19. The
results presented correspond to the two geometries illustrated in Figure 18 and show
contours of constant mean square error when the optimally designed filter matrix H, is
used to give the best possible approximation to the desired signals specified via the matrix
A in equation {42). Thus the contours show

J7La? = E[eTtn) etn)] / E[dTin} d(m)]. “3)

expressed in decibels. The plots show the effectiveness with which the desired signal at
one microphone is reproduced at positions in the vicinity of that microphone. Results are
presented when the signal to be equalised is limited to different bandwidths. (Full details
of these computer simulations are presented by Orduna-Bustamante et al [21)) 1t is clear
from the results, which show the effectiveness of the reproduction of the desired signal
over a 0.4 m x 0.4 m region, that the zones of reproduction scale approximately in size
with the acoustic wavelength at the maximum frequency in the signal. In fact, it is
interesting to observe that zones of a practicable size are produced for signals having a
maximum frequency between 1 and 2 kHz. This is just the frequency range in which the
human auditory system ceases to make use of arrival time differences between the signals
arriving at the two ears in localising sources [13]. Above this frequency range, crudely
speaking, it is mostly inlensity differences which aid localisation. It may be, therefore, that
the techniques suggested here have some possibilities for improvement in sterecphonic
imaging; they await psychoacoustical evaluation.
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a)
f < 1kHz f < 2kHz f < 4kHz
o
©
S
b)

f < 4kHz

Figure 19

The spatial extent of the effectiveness with which poorly positioned
real sources can be used 1o reproduce the field due to ideally placed
vinual sources. The contours show values of the cost function given
by equation [43] when evaluated over different {low pass) bandwidihs
in 5dB steps below 0dB, which is the outermost contour illustrated
(values higher than OdB are not shown). Resulis are shown for the
geometries a) and b) of Figure 18 aver a 0.4m square grid centred
on the 2 microphones.
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11. CONCLUSIONS

Least squares techniques that have proved so useful in the study of the active control of
sound have been applied specifically to problems in sound reproduction. The general
philosophy adopted is to design a matrix of linear filters that operates on a number of
recorded signals in order to deduce the signals input to a number of sources used to
reproduce the field. Whilst it has been demonstrated that the reproduction of a field over
a restricted spatial region is a realistic possibility over a limited frequency range, it is
suggested that the reproduction of directional information may provide a more practicable
objective. A discussion has been presented of practical techniques for the design of the
optimal filter matrix and some suggestions have been given for the improvement of
existing stereophenic reproduction systems.
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ATPPENDIX 1
THE OPTIMAL FILTER MATRIX IN THE 2-SOURCE/ 3-LOCATION CASE

The structure of Hy(z} can now be examined with reference to a specific example. Assume
that 2 sources are used to reproduce the field at 3 locations. The matrix C(z) then has the

form

=811 z-812
Rn Rz

C(z)=f—" o 2w (ALD)
Tl Ry Rz

832 z-432
— R3yy  Raz -

and the matrix to be inverted is given by

[cH@ c) + 81] = (Z—;’:)z
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1 1 1 (A1 ~812) A871-822) zla31-822
=+ 55+ 55+ +
(Ru2 Ro* Rant* P RhRiz RnRn * RyRzm (A12
A11-412) &0 -422) z-{A¥ - 832 1 1 1 B 12
+ + ==+55+5——+
Rk Ra1Raz RyRy (er2 RA™ R3? )
The optimal filter matrix can be written as
1
(2} = adj |CH@) C(2) + 1] CBGR) Atz), (A1.3)
R TR B1] il 81]

where the symbols "det” and "adj" refer to the determinant and adjoint of the matrix
respectively. The numerator of this expression is a matrix of FIR filters. These filters can
be made causal by choosing Az} to consist of a diagonal matrix of “modelling delays” [16]
having the transfer function -8, Thus if we choose A{z) to be z-21, such that the desired
signals d{z) are simply delayed versions of the recorded signals u(z), the numerator matrix
reduces to the form

a1z apzt appzd
N (A1.4)

dilcHey ¢ 1l cHIY A =
adi[CHE) C2) + B1] CHE) AG2) [rm 8 ap A a3zt

where, for example,
1 1 1 2811 g(A11-412)  ol821-822)  (43) -833K:812 (ALS)
am=lzS+-—=+=+ - + - -
n (an Rt Rt P )Rn RnRiz ¥ RaRn RuRa JRiz

Thus, irrespective of the values of the delays Aim. provided the modelling delay A is
chosen to be sufficiently large, the filters in the numerator matrix can be made causal,
since a term of the form z2(411 - 4) will represent a delay in discrete time provided A > Ay.

The denominator of equation {A1.3), given by the determinant of [CH(Z) Clx)+f I], also

has an influence on the choice of modelling delay &. The realisability of the filters in Hy(z)
is also dictated by the form of this determinant. The zeros of the determinant will give the
poles of the filters in Hy(2). Provided these poles lie inside the unit circle, the filters will be
stable. In the specific case considered here,

det [CH(z) Clzy+ B1 ]

1 1 1 )(Rl 11 ) ( 1 1 1 )
= +— T+ + + + -
(an E A A B Sy v Ao A (Ry1R122 " (RyR22 * {Ra1RazP
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(A1.6)

z~41 + 74 ez 934293
- - +
(RnRuRz;Rzz T RuR2R31Ra2 " RnR2R3 Rsz}

where the delays in this expression are given by

d1 = (An - A2) ~ (A11- A1), .
dz = (Am —A32) - (811 - 892), ' (A1l7)
d3= (831 - 832) - (Agy - Ap). ‘

Note that the determinant inevitably contains terms such as 241 which represent a forward
shift in time {or if 41 is negative for a given geometry, 2741 will represent a forward shift).
The determinant can however be reduced lo a polynomial in only the backward shift

operator z-! through multiplication by a term z-4det where Agq is equal to the largest
positive value of dy, d2 or d3. Thus the reciprocal of the determinant can be writlen as

1
det[CHz) C) + B1]

a z~Adet

1- by 78dr1 + by £ Bder * NV 4 by g (0det - 1) 4 by 1<3des * 9D * by 2%Bdet =72 4 7 Bdiet *+ A3 (A18)

where the coefficients in this expression are given by
a =-RnRnRnRsz,

1 1 i 1 1 1
b= RaRafsiRe [ (730 e T+ o o™ T )

1 1 1
- ((R]]Ru)z * (Ry1Rx)? * (R31R32)2)] !

b2 = R31R2/Ruk2,
b3 = RnRaa/RiiRz. {A1.9)

Thus the appearance of the term z-8det in the numerator of this expression reduces the
value of modelling delay A required to ensue that the matrix of filters remains causal. The
stability of the system is now determined by finding the roots of the denominator
polynomial in equation (A1.8). Note that this is determined entirely by the geometry of
the system used for recording and reproduction.
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APPENDIX 2
ADAPTIVE FIR FILTERS

Equation (21) of the main text can be rewritten
dtm) = gT(m h, (A2.1)

by using the definitions of the composite vectors h and r(n) given in equations (24) and
{25). Furthermore, if we define the composite vector d(n) as

dt(m = [t @m .. don), (A2.2)
one can write
dtn) = Rin) h, (A23)
where the matrix R{n) is defined by
RT(n) = [nim ) .. 1sim)]. (A24)
The optimal value of the composite tap weight vector h is now sought which minimises
the time averaged sum of the squared error signals and the source input signals, the latter

being included in order to penalise the “effort” associated with the source input signals at
the optimal solutian. The following cost function is minimised;

] =EfeTtm etm) + pvTtn v(n)]. (A25)
Note that both the contributions to the cost function can be written in terms of the

tomposite tap weight vector h. Thus using equation (A2.3) shows that the vector of
sampled error signals can be written as

e(m) = d(m) - d(x) = dim - Ren) h. (A26)
In addition, the m ‘th sampled source input signal can be written as

U1} = Wy T ug(m) + T ugln) . hpy T udn) . (A2.7)
where the vectors ui(n) are the recorded signal sequences defined by

w(n) = fum ueln =13t - 1+ D], (A28)
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Defining the composite vectors
BT =[BT hondT - BT o (A29)
wT(n) = [u Ty uaT(m) .- wTtn), (A2.10)
leads to the expression
E[vm2(m] = hT E[wim wT(m)] by . (A211)

If all the recorded signals uil{n) are modelled as uncorrelated white noise sequences all
having a mean squared value of ¢ then E [w(m wT(m] = 6 I Under these conditions

M M
EfTmvim] = ¥ Efomdn]= ¥ AhTmhn=02hTh,  (A212)
m=1 m=1

where h is the composite tap weight vector defined by equation (24) of the main text.
Thus the cost function for minimisation can be written as

j=E[eTimen)] + Bo?hTh, (A2.13)

which on substitution of equation (A2.6) reduces to

[=hT {E[RT(H) R(m) + B o2 1} n -2 E{dT( Rew)] b+ E[dT(n) d(w)]. (A2.14)

The minimum of this cost function is defined by

ho = [E RT(m R(n)| + f o2 1}“ E[RT(m d(n)], (A2.15)

Jo = E[dTen) atn)] - E[aT¢n) Ren] {EIRTOO R} + B2 1} E[RTG d(a)].  (A216)

An efficient means of converging adaptively to the minimum of this cost function is given
by the Multiple Error LMS algorithm [15]. This follows from application of the method of
steepest descent. First note that the gradient of the cost function with respect to h can be
written as

31—":25[RT(11)R(H)I1—RT(n)d(n)] +a? Bh, (A217)
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which upon using equation (A2.6) can be written as
a—]—czﬁh—ZE[RT(n)e(n)] (A2.18)
e . .

The classical assumption used in the derivation of the LMS algorithm is now made [22]
and the composite tap weight vecter is updated every sample by an amount proportional to
the negative of the insfanianeous value of the gradient vector. This leads to the tap weight
update equation

hin + 1) = hin) ~ {0? Bh(m) - 2 RT(m) en}, (A2.19)
where 4 is a convergence coefficient. This can also be written as
hin + 1) =y h{m) + a RT{n) eln), (A2.20)

where @ =2 g and y= (1 - g 0% B). This equation is now in the form of the "leaky" LMS
algorithm [22] where the factor (< 1) ensures that the algorithm continuously searches for
the "least effort” solution by slightly reducing the value of all the tap weights at each
iteration. As pointed out in reference [15], it is interesting to observe that this is a direct
consequence of including the "effort” term in the cost function.

APPENDIX 3
"OUTPUT ERROR" ADAPTIVE IIR FILTERS

Since the analysis presented in Section 4 has demonstrated the intrinsically recursive
nature of the optimal filters necessary to process the recorded signals, it is worthwhile to
consider briefly the possibilities for using adaptive 1IR filters as elements of the matrix H.
Thus it can be assumed that equation (20) of the main text, which describes the input-
output relationship of the m k't element of H, can be written in the form

-1 I-1

Simkln) = Z Amila) ripudn - 1) + z Dot stemilnt =, (A3.1)
i=0 ji=1

where as illustrated in Figure 15, the coefficients a,(i) and by{j) characterise the forward
and recursive parts of the filter respectively. One is tempted to try to deduce values of

these filter coefficients by again proceeding using the methodology of the previous
section. Thus one can write the signal syt as the inner product

Straln) = T P}, (A3.2)
by using the definition of the vectors given by
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ErsT = [amk® sl . A= 1) k1) bs(2) . bk = 1], (A3.3)

Prout) = [rimin) Ak = 1) . 1t = 1+ 1) | Stk = 2) . . Stmidit = J4+ 1], (A3.9)

and then defining the composite vectors f and pi(n) by direct analogy with equations (24)
and (25) respectively. Thus ‘

7= [f]]T f127 . £ T I T 227 . faxT ... L6y T 4027 . fMKT], {A3.5)

PTG = [praTm .. pr ") lpm T . prak T . . lpuanT(m) .. pimxT ()]
(A3.6)

This in turn leads to the definition of P(n) by analogy with equation {(A2.4). This is given
by

PT(m) =[p1(r) palm) . . prln]- (A37)

One could again choose to minimise a cost function of the form of (A2.5). In penalising
"effort" however, it is not possible to justifiably proceed to the analogous form of equation
(A2.13) which neatly expresses the effort in terms of the sum of the squares of all the
coefficients of the FIR filters comprising H. This is the case since the analogous forms of
‘equation (A2.7) and (A2.8) will include the filter output sequences and equation (A2.12)
(with h replaced by f) would only follow if the filter outputs could be assumed to be white
and to be uncorrelated with their inputs, even in the case of white recorded signals.
Nevertheless one may regard o? T £ as some crude approximation to the sum of squared
values of pn(m), in which case the analogous cost function to be minimised could be
written as

J= £ {ERTMPT(n) + B2 1} -2 E[dTn PG £+ E[dT(m d(m).  (A3.8)

This has the appearance of a quadratic dependence on the composite coefficient vector h
which contains all the coefficients of all the M x K recursive filters.

Unfortunately, however the existence of a unique minimum and "quadratic shape” of the
function is not ensured, due to the nature of E[PT(r) P(m)] which now includes cross- and
auto- correlations between the filtered reference signals rimi(n) and the output signals
simk(n). Despite this, one can again make some crude approximations to the instantaneous
estimate of the gradient of the function and derive an algorithm which is directly
analogous to equation (A2.20). First note that the instantaneous estimate of the gradient of
] with respect to the composile vector f can be written .
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Q.llm

L
Z o2(n) = 2 2e(m) ‘9‘”‘"’ , (A3.9)
= I=1

where the gradient vectors de{n)/J f consist of contributions from the sub-vectors
der(n}/ Hpp Since

K M

ey =diln} =3 Y spmeln), (A3.10)
k=1m=1

then it follows that

dyln)_  dspmiln)
afmk - afmk ’ (A311)

where the sub-vector on the right side of this equation is given by

@ stmilr) [351";.&(") @ Spoilm) @ 5imiln) |351m;;(n) @ S5pmiln) ]T
Ik | 92mi0) Fami) " FaklI= 1) | G b)) Al = 1)
{A3.1D)

It follows from equation (A3.1) that

-1
2 Sjmekn) . ! " O 5imk (1 - )
—"—-'—aamk(” = il - 1) + E bmi(}) )’ (A3.13)
e

. . |
9 stmpdn) Fspmi tn =jY ..
Ty = Sk =) B bk —FE—m j (A3.14)

j'=1

These equations constitute recursive relationships for the gradients of syu(n) with respect
to ampli) and bm(j}. A number of approximations afe now possible, including the use of
these relationships in deriving a coefficient vector update equation (see the discussion
presented in [22] regarding the scalar case). The simplest assumption, however, is that
adopted by Feintuch [19] in the scalar case and extended to the multi-channel case by
Elliott and Nelson [20]. This simply ignores the second terms on the right side of
equations {A3.13) and (A3.14), such that equation (A3.12) becomes

3 Sim
;’f n) [r;mk(n) Akt =T+ D {spen =D spn = J+ 1) ]T = Pk} . (A3.15)
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It then follows that def(n)/ @ f = - pi(n), where, as mentioned above, pi(n) is defined by
analogy with equation (25) of the main text.- Equation (A3.9) can thus be written

L
% Y 2etm pitn) = -2 PT(m em) . (A3.16)
=1 :

If this instantaneous estimate of the gradient of the cost function is now used, together
with the gradient of the effort term, then the coefficient update equation that is exactly
analogous to equation (A2.20) is given by

f{n+1)= yEn) + a PY(n) e(n) . (A317)

In view of the indeterminate form of the function whose "minimum" this algorithm is
attempting to find, there is no guarantee of canvergence of the algorithm and a high
chance of instability as poles associated with the recursive filters migrate ocutside the unit
circle during the adaptation process. Nevertheless, there is some evidence in the
application of the scalar version of this algorithm 1o active noise control [23] that it can be
successful in producing substantial reductions in mean square error.

APFPENDIX 4
"EQUATION ERROR" ADAPTIVE lIR FILTERS

Another approach to the adaptive design of IIR filters is to use an “equation error”
approach [18]. A description of the application of this technique to the sound
reproduction problem in the single channel case is given by Nakaji and Nelson [24]. It
turns out that this approach also appears to be well suited to the multi-channel sound
reproduction problem. The analysis of Section 6 has demonstrated that the intrinsic
structure of the filters necessary to process the recorded signals is that of recursive filters,
but all the filters have the same denominater polynomial; i.e. the filters have common
poles. 1f it is therefore assumed that the filter matrix H consists of recursive filters having
forward paths Apdw) which are purely FIR filters, together with recursive parts
characterised by the frequency response function B{w) which is common to all filters, then
the “reversed transfer function” block diagram of Figure 13 can be redrawn in the two
equivalent representations shown in Figure 17. It is the block diagram representation of
Figure 17b that enables the equation error approach to be taken. First note that one can
A

write the sampled value of the signal d'(n) defined in Figure 16 as

K M
df'(n) = E Z Amp? Tmend {Ad.1)
k=1m=1

wherte the vector ap, is defined by
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amkT = [2mil0) apil1) 3il2) . . amilT-1)], ' (A4.2)

and rypin} is as defined previously in equation (23) of the main text. Defining the
composite vector a by

al= [anT anT .. aixTlanT azl. sk T1.. . lamT amat .. 3mK1]- (Ad4.3)

then enables the expression given by equation (A4.1) to be written as
dr(n) = aTn(n), (Ad4.4)

where n(n) is the composite vector defined by equation (25) of the main text. The signal
di(n) can then be written as

-,
dkm = aTntm + ¥ b din- ), (A4.5)
j=1

where b(j) are the coefficients of the recursive filters common to all elements of H.

The equation error approach to adaptive IIR fillering then proceeds by replacing ?i;(n -
on the right side of equation {A4.5) by di(n - j}; i.e. the estimate of past values of the
desired signal is replaced by past values of the desired signal itself. The following signal
is now defined

A -1
di () = aTrg(n) + 2 b(jydy(n—). (Ad.6)
=1

This can also be written as

dje(n) = aTry(n} + bTdi(m),
by defining the vectors

bT = [6(1) b2} B3) ... bY-1)], (A4.8)

a0 =[din - Dign - Dadtn -3 .. %t -1+ 1],
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Equation (A4.7) can be further reduced to the form
dm) = qT(m g, (A4.10)
where the composite vectors qi{n} and g are defined by

g7 = [anT 2" arkT lanT aT. . 2™ |.. laniT " - amx™ 7]
(A4.11)

qiTim =[rmT(n) LR TS Tt R i) ld:T(n)].
(A4.12)

Furthermore one can define the vector of L signals 3;,(:1) by the composite vector

A.T00 = [hetm)dam . . . d(m)] (A4.13)
such that

d.Tim = Qtm) g, (Ad4.19)
where the matrix Q(n) is defined by

QT(n) = [q1(n) ga(n) . .. quim)]. (A4.15)
The cost function for minimisation can be written as

] = E[e.Tm) eom) + vTim vim), (A4.16)
where the "equation error” vector e.(n) is given by

ee(n) = d(n) - dy(n) = d(n) - Qg . (A417)
One can again proceed to derive an algorithm for adaptively finding the minimum of the
cost function by following exactly analogous steps to those presented in Appendix 2.
Again however, as in the case of output error adaptive filters, the "effort term" in the cost
function cannot be reduced with full justification to that given in equation (A2.12). One
has again to assume that the sum of squared filter coefficients including those in the

recursive parts, is an approximate measure of "effort”. With this assumption, the cost
function for minimisation reduces to
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1=8" {E[QTm Q] + B2 1} g -2 E[aTin) Q)] g+ E[aTm dtn].
' (A4.18)

In this case, however, unlike that of the output error formulation, E{QT(n) Q(n)] will be a
positive definite matrix and a unique minimum to the function will exist {18]. It is also
possible to make the same assumptions regarding the evaluation of the gradient vector
d]/ dg as made in the FIR case. This leads directly to the coefficient update-equation

gln+1)=ygin) + aQT(me.ln). (A4.19)

However, there is still the possibility of instability during adaptation and it may be
necessary to monitor the poles associated with the recursive part of the filter. Note
however, that there is only one set of poles to be monitored and that represents a
significant advantage in this multi-channe] case. The final drawback with this approach is
that it may lead to significant bias in the optimal solution, especially in the presence of
additive noise {18]. Nevertheless the approach seems an attractive possibility for dealing
with the problem at hand. '
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