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SUMMARY

Recent studies of the active control of acoustic fields have used analytical methods and
multi-channel signal processing techniques that can be usefully applied to problems in
sound reproduction. This paper considers several aspects of the reproduction of sound.
First, the possibility is considered of the perfect reproduction of an acoustic field in both
space and time. Results from classical acoustics suggest a means by which this could be
achieved, but it is soon concluded that this is an unrealistic objective in practice The
reproduction ofa sound field over a restricted spatial region is also considered. Some new
results are presented which demonstrate that a field can be reproduced that closely
approximates the original by first recording the acoustic signals at a finite number of
positions in the original sound field. The signals are processed via amatrix of linear filters
in order to produce the inputs to a number of sources used for reproduction An analysis
in the frequency domain shows that such a strategy could be useful, but its practicability
at high frequencies appears to be limited by the need to provide adequate spatial sampling
of the original field. Another approach that is considered is to concentrate on ensuring
that the direction of propagation of the waves in the original field are well approximated
in the reproduced field. This approach appears to be a more practicable alternative, and
offers the promise of successful operation over a wide frequency bandwidth. Some
discussion is presented of the realisability of the optimal filter matrix and a practical,
adaptive, filter design technique is presented which has already proved successful in some
limited experiments. Finally, some further possibilities are suggested in which the same
principles are used to improve the quality of existing stereophonic sound reproduction
systems.

1. INTRODUCTION

Research into the potential of active techniques for the control of acoustic fields has
undergone a rapid expansion during the last two decades. This growth has paralleled the
expansion in the capability of modern electronic devices for the digital processing of
acoustic signals. The study of the subject has embraced both the "physical" aspects of the
problem (which, perhaps surprisingly, were only partly understood at the beginning of
the 1970's) and also the "technological" aspects of the problem. The latter have involved
the development andstudy of novel digital signal processing techniques required
specifically for theactive control of sound. The fusion of the two subject disciplines of
"classical" acoustics and "modern" digital signal processing has produced some exciting
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developments. Much of the work in this field that had been undertaken by the start of the
1990's is summarised in reference [1 ], which. also presents a unified introduction to the two
contributing subject disciplines. Reference [1] does not, however, deal with recent
advances in what may be termed the active control of "structurebome" sound. That is. the
control of wave fields in elastic solids and their interaction with fluid borne sound fields.
Much of the recent work in this area will be summarised in reference [2] and is also dealt

with in reference [3].

This paper will concentrate on further developments in the active control of acoustic
fields, but with a rather different objective in mind than that traditionally associated with
the subject. Most work to date has understandably been focused on the active suppression
of unwanted acoustic noise, where the "desired" sound field is simply a sound field whose
amplitude is of considerably lower amplitude than that associated with the unwanted
sound. In this work we will broaden the scope of the subject to include the production of
a sound field which has predefined spatial and temporal characteristics. The application
of interest in thus in the accurate reproduction of a given sound field rather than in its
suppression.

Naturally, there is already avast literature that deals with the reproduction of sound, and
the subject continues to be of great technological interest in modern times, with
phenomenal strides having been made in the accuracy with which acoustic signals can be
recorded, stored and reproduced. Again, most of these recent advances have arisen
through the application of digital techniques and have come to fruition during the period
in which the active control of unwanted noise has become a practical proposition.
However, most of the work in the field of sound reproduction has been directed towards
the technological problem of accurate reproduction of recorded signals. Surprisingly little
attention has been devoted to assessing the extent to which an acoustic field (rather than
just an acoustic signal) can be faithfully reproduced.

In this work an attempt will be made to assess this possibility, and in doing so, full use
will be made of the analytical techniques that have proved so useful in the study of the
active control of unwanted sound. Furthermore, some suggestions will be given for
practical realisations of systems for the reproduction of sound fields that make full use of
the multl-channel signal processing techniques that have also been widely used in active
noise control systems. Indeed, in signal processing terms, the suppression of a given
sound field and its reproduction turn out to be very similar problems.

2. THE PERFECT REPRODUCTION OF SOUND FIELDS

It is worth pointing out at the initiation of these discussions that the sound field within a
given spatial volume can in principle be reproduced perfectly in both space and time,
given acomplete dacription of the acoustic pressure and pressure gradient on the
hypothetical surface that bounds the spatial volume. This reasoning follows from the
Kirchhoff-Helmholtz integral equation which enables the sound field within a given
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Figure 1 An illustration oi the possibilities forthe perlect reproduction of sound.
, Recordings are made of u(y,t) and p(y.t) on a surlace S enclosing

a volume V. The field is later reproduced in an identical volume V' by
using a continuous layer of monopole and dipole sources on a suriace
S” thatis geometrically identical to S.
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volume V to be uniquely described by these acoustic properties on the bounding surface 5.

Thus an acoustic pressure field pix, t) whichsatisf-ies the homogeneous wave equation

(v2 —é %)p(x, i) = o. (l)

in a medium with a sound speed cg, can be described by the integral equation

p(x, n =J f7}; {u(y, r— R/c,)} .ndS

(x-y) 3 c,

*5 4nR2c,(E+fi){P<¥J-Rlco)
} -nd5.

(2)

In this expression, p" is the density of the medium, x is the position vector of the field

point contained within the volume V, the vector y defines the position on the surface S

that encloses V, the distance R = Ix - y [and n is the unit normal vector that points into the

volume V from the surface 5. A full description of the derivation of this relationship is

given by Pierce [4]. Although not obvious from the form of the integral equation given

abbve, it is well known that the two surface integrals in the equation have a clearly

defined physical interpretation. The first term can be considered to be the contribution to

the sound field in V that is radiated by a continuous distribution of monopole sources

located on the surface S, The strength of the monopoles is determined by the particle

velocity distribution u(y, t) on the surface. Similarly, the second integral can be

interpreted as the sound field produced by a continuous layer of dipole sources on the

surface 5, their strength being determined by the pressure fluctuation p(y, t), (A

description of the physical reasoning that leads to these conclusions is presented in

reference [1].)

One can conclude from this well established principle of classical acoustics, that given a

complete knowledge of u(y, t) and p(y, i) on a surface S that encloses V, one could

perfectly reproduce p(x, 1) inside V by activating an appropriate distribution of monopole

and dipole sources on S. The possibility for reproducing a sound field in this way is

illustrated in Figure 1. Thus one records u(y, i) and pfy, i) on S surrounding the volume V

of interest. Given these recordings, one can activate at a later time, and in a different

space, a continuous source layer on a surface S' that is geometrically identical to the

surface S. This will result in the reproduction within V, of the sound field that previously

existed within V. Note that, as illustrated in Figure l, in reproducing sound within V‘, no

field is reproduced oumide V'. This (obviously necessary) condition also follows from the

Kirchhoff-Helmholtz integral theorem, which shows that for field points it outside V,

equation (2) holds with pix, 1) equal to zero. Finally, of course one has to assume that both

pa and c, are identical in V and V'.
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However, variations in density and sound speed between V and V‘ are probably the least
of the difficulties involved in implementing such a scheme The recording of signals over
a continuous surface and their subsequent use in activating a continuous source layer is
certainly not a current technological possibility. Nevertheless, accepting that both
recording and reproduction must be accomplished with discrete transducers, it leads one
to speculate upon how closely this scheme could be realised in practice. Previous work on
active noise control has gone at least some way to answering this question. This is
reviewed in reference [1] (see Chapter 9. Section 9,14). Considerable work on the

discretization of continuous source layers has been undertaken by Soviet authors (see, for
example, Zavadskaya et a! [5], Konyaev et nl [6], and Konyaev and Fedoryuk [7]).
Although not entirely conclusive, the work of these authors, together with the analysis
presented in reference [1], suggests that the linear separation between discrete
monopole/dipole source elements used to approximate a planar continuous source layer
should not be greater than 1/2, where 1 is the acoustic wavelength at the frequency of
interest. Applying this argument to the reproduction of a field inside a spherical volume
whose diameter is D suggests that one would require approximately IlrtDz/Il2 discrete
source elements. Thus for a sphere 10 m in diameter and a frequency of 10 kHz

(1. = 3.44 x 10‘2 m in air at 20 °C). in excess of 105 sources would be required! However for
a sphere of] min diameter and frequency ofl kI-Iz, this number drops to around 102. To
adopt this philosophy, even for modest volumes and frequencies, represents a task of
considerable complexity.

3. REPRODUCTION OF A SOUND FIELD OVER
A RESTRICTED SPATIAL REGlON

The discussion of the last section suggests that the perfect reproduction of a sound field
over a large spatial volume is not a currently realistic aim, even with the rapidly
advancing technology at our disposal. The question then arises as to how existing
capabilities might be best utilised to improve. in some sense, existing sound reproduction
techniques. Here attention will be initially restricted to the objective of providing a single
listener in a given "listening space" (see Figure 1) with an incident acoustic field that
matches, as closely as possible in space and time, that sound field which would have been
incident upon the listener in the "recording space". In simple terms this is the age-old
objective of reproducing a restricted region of the concert hall sound field in a restricted
region of the living room. The region in question is, of course, that which surrounds the
listener.

An obvious starting point for an appraisal of this possibility is to undertake ananalysis in
the frequency domain. In fact, the approach taken here is exactly that which has already
proved so useful in defining performance limits in the study of the active control of sound
[I]. Here the definition is sought of the "optimal" outputs of a number of discrete acoustic
sources which give, in a least squares sense, the "best fit" (in amplitude and phase) to a

desired single frequency sound field. Whilst there are limitations to the extent to which
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Figure 2 Reproduction of a plane wave sound field The strengths oi the

sources are optimally adjusted to minimise the error between the

recorded signals and those reproduced at equivalent locations in the

listening space.
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conclusions arrived at in the frequency domain can be extended to the time domain, this
type of analysis invariably leads to a useful assessment of the "best that can be done".

First it will be assumed that the sound field in the "recording space" consists of a single
plane wave at an angular frequency a). Second, it is assumed that an array of discrete
transducers is used to record this sound field. For the sake of simplicity it will be assumed
that the transducer array and the plane wave are restricted to the horizontal plane as
illustrated in Figure -2. The optimisation problem and its subsequent interpretation in
terms of a signal processing problem is best described with reference to Figure 3.

It is assumed that the K transducers detecting the harmonic plane wave in the recording
space produce harmonic signals described by the complex numbers uk(a)) which comprise
the complex vector u(w). The objective is to reproduce these signals as closely as possible
at the equivalent locations in the listening space. M sources are used to reproduce the
field and their "input" signals are described by the complex numbers 11,...(01) which
comprise the complex vector v(w). These sources produce signals aim) at L locations in
the listening space, these signals comprising the vectord(w). Here it will be assumed that
the L locations in the listening space are geometrically equivalent to the K locations of the
recording transducers in the recording space such that K = L and that d(w) =u(w). Thus
the desired signal vector is exactly the recorded signal vector. in general. it is useful to
define the desired signals am) in terms of the recorded signals um) through the more
general relationship d(w) = A00) um). Here of course it is assumed simply that Mal) = I,
the identity matrix.

One can now find the signal vector v00) which minimises the sum of squared errors
between the desired and reproduced signals. The quadratic cost function that is to be
minimised is given by

I (w) = e”(w) 2(a) + (What) V(_(IJ), (3)

where the complex error vector 2(a)) = d(a)) — 3(a)). The cost function thus consists of the
sum of the squared errors eH(m) e(w) plus the sum of squared source input voltages
VH0») v(m) multiplied by the factorti. The term [1 thus quantifies the relative weighting in
the cost function given to the "effort" used in minimising the sum of squared errors.
Equation (3) can be expanded to give ‘

1(0)) = VH0”) [CH(nJ)C(a)) + Bl] v(w) —dH(w) C(m)v(w)

— VH(UJ) CHM) d(w) + dH(w) duo). (4)

Since [(ch) C(m) + [it] must be a positive definite matrix (ire.

vH(w)[CH(m) CH(aJ) + [i I] v(a)) > 0 for all v(w) s 0), then this function must have the
unique minimum defined by [‘l]
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d desired
signals    

  

u e
recorded error
signals signals

v d
source input reproduced

signals signals

Figure 3 The sound reproduction problem in block diagram form. The vector
u is a vector of recorded signals. v is a vector of signals input to
the sources used for reproduction and d is a vector of signals
reproduced in the sound field. The vector 6 defines the vector 01
signals that are desired to be reproduced and e = d - d is a vector
of error signals. '[he matrix C defines the transfer functions
between v and d . and the matrix H defines a matrix of filters
which are used to operate on the recorded signals u in order to
determine the source input signals v. The matrix A is used to
difine the desired signals d in terms at the recorded signals u.
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mm) = [CH(w) C(w) + a 1]'1 CH(w) d(w), (5)

Mm) = we») [1 — C(w) [CH(w) C(w) + p 1]" CH(m)] am), (6)

where vow) is the optimal vector of source input signals and M10) is the minimum value
of the cost function

This analysis has been used by Kirkeby and Nelson [8] to investigate the effectiveness of a
number of geometrical arrangements of recording and reproducing transducers. One such
specific arrangement is illustrated in Figure 4. This consists of an array of four (point
monopole) sources spaced on a 90" arc. The recorded signals um) are assumed to be those
produced by a harmonic plane wave travelling at an angle a to the x1- axis of the
coordinate system. The complex pressure produced by such a wave can be written as

you) = e -jmtx,cas 9+ x2 sin m/co, (7)

where w/q, is the wavenumber and the wave is assumed to have unit amplitude Thus it '
is assumed that the recorded signals (and thus the desired signals) are given by

“(01)=dl(m)=e-jmtxlkcm99xzksinfll/ca’ (B)

where the position of the k‘th recording sensor is defined by the coordinates (Kilnxzk). In
reproducing the sound field, we assume that the elements of the matrix C (m) of frequency
response functions are given by

pa 2 ’ifllle /€n
Chum) = “R,” , (9)

where R1," is the distance between the I'th point at which reproduction is sought and the
m'th source used {or reproduction It is thus assumed that the reproduced signals are
exactly the sound pressure fluctuations that would be produced by point monopole
sources having volume accelerations equal to v,,.(aJ), the source input signals.
Furthermore, it is implicitly assumed that the listening space is anechoic. '

4. RESULTS OF THE FREQUENCY DOMAIN ANALYSIS

Some results of using the solution given by equations (5) and (6) with B = 0 and with the
arrangement shown in Figure 4 are illustrated inFigure 5‘ This shows the value of
(la/L)“, where L =K is the total number of recorded signals (64 in this case) as a function
of frequency and the angle of incidence 9 of the plane wave. First note that for angles of
incidence within the range 45° to 135°, the normalised error always remains reasonably
low. This range of incidence angles of course lies within the angle subtended at the origin
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Figure 4 The geometry of reproducing sources studied by Kirkeby and
Nelson [6 ]. The (x1. x2) coordinate positions of the reproducing

sources are shown. The recording transducer array was a 0.5m x
0.5m square centred on the origin and contained 8 x 8 transducers
spaced on a uniform grid.
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of the coordinate system by the array of sources. The normalised error is also obviously
smallest when the angle of incidence of- the plane wave coincides with the angle
subtended by each of the individual sources. There is also a general trend of increasing
error with increasing frequency and at high frequencies especially. as one would expect,
the normalised error rapidly approaches unity outside the range of incidence angles
subtended by the sources.

Figure 6 shows a plot of the "total effort" (v,H(w) vu(w))"’ used by the sources, this belng
the square root of the sum of the squared moduli of the optimal source input signals. This
shows that in the low frequency range (< 500 Hz), the sources will make a large effort to
reproduce the field for angles of incidence outside that subtended by the sources. This is
clearly an undesirable effect. However for frequencies above 750 Hz, the sources
effectively "turn off" for incidence angles outside the range subtended by the sources
Figure 7 shows a plot of the individual source input signals for a frequency of 1 kHz.
Clearly, as the angle of incidence of the plane wave varies the sources vary in strength in a
well defined and "reasonable" way, with the sources closest to the plane wave angle of
incidence producing most of the output.

Figure 8 shows a plot of the condition number of the matrix GHQ») CW) 4» [ii which has to
be inverted to find the optimal solution. This condition number is the ratio of maximum
to minimum eigenvalue 'of the matrix and gives a measure of the sensitivity of the solution
to small changes in C(m). At low frequencies, the solution becomes badly conditioned,
with the matrix CHOU) C(w) close to becoming singular when B = 0. Thus, as one might
expect, when the acoustic wavelength is much longer then the separation between the
sources, two columns of CHM!) C(w) can become very similar and the determinant of the
matrix can approach zero (see the discussion presented in Chapter 12 of reference [1]).
Also shown in Figure 8, however, is the variation of condition number as B is increased
from zero. This shows how the matrix to be inverted becomes increasingly well
conditioned as [i is increased. The values of d used are quite small, and upon writing Bas
the product attract: CHM) C(10)), the results show that values of e of only 0.001 have a
profound influence on the conditioning of the matrix.

Finally, as an example of .how successful the least squares solution can be in defining
optimal source strengths for reproducing the field, Figure 9 shows the amplitude and
phase contours of the reproduced field when the recorded signals were due to a 500 Hz
plane wave at an angle of incidence 9 = 90”. The field is reconstructed remarkably well
over the region in which the recordings were made.

Clearly, however, a large number of recording sensors have been used in the example
presented above and the question naturally arises as to the influence that the sensor
density has on the quality of the reconstruction. The work presented by Kirkeby and
Nelson [8] has shown that. roughly speaking, the density of sensors must be sufficient to
ensure that the sampling theorem [9] is satisfied for the highest "spatial frequencies” of
interest. Thus provided that at least two sensors are used per acoustic wavelength, the
sensor density has very little influence on the least squares solution. Thus for the example
Pm.I.O.A. Vol 15 Pan 3 (1993)
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Normalised
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Frequency (Hz)

Figure 5

   
° 8 (degrees)

The normalised minimum error in the reproduction of the sound field
as a function of lrequency and angle of incidence of the plane wave
in the recording space when the field is reproduced using the
source arrangement 01 figure 4.
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The total source eflon \/(v°H(w) voH(w)) used in the optimal
reproduction of the plane wave sound field using the source
arrangement shown in figure 4.
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Figure 7 The individual source input signals when the plane wave sound field is

reproduced using the source array shown in figure 4 at a frequency of

1000 Hz 0-04 v1((n) 00-D- v2(u)) m v3(m) -x-x-x- v1(w)
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Figure 8 The condition number (ratio of maximum to minimum eigenvalue) oi

CH((o) C(m) as a function at frequency when the field is reproduced
using the arrangement 01 figure 4. Note the improvement in low

frequency conditioning when 8 (proportional to (3) is increased.
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Contours at constant (a) amplitude and (b) phase of lhe
oplimally reproduced sound field when the recorded sound field is
due to a 250 Hz plane wave at 8 = 90°. The source arrangement
is that shown in figure 4.
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presented above, the array of 64 sensors were replaced by anarray of 4 sensors (at the
comers of the 0.5 m square) and there was found to be very little increase in the mean
square error for frequencies below about 400 Hz. It therefore appears that there are
conflicting requirements in the design of a practical sensor array. If the linear dimension
of the zone over which reproduction is sought is given by D, then the number of sensors K
required to record the signals will be given approximately by K = (l 1- D/d) 2. If the sensor
spacing d = Lulu/2 where 11".," is the acoustic wavelength at the highest frequency of
interest /,,,,,, then it follows that K = (l + 2 f..." D/c,)2. Thus if D = 0.5 m and
fmu = 10 kHz, then K = 900; it is clearly unreasonable to attempt accurate spatial
reproduction for such high frequencies over such a relatively large area.

5. REPRODUCTION OF THE PROPAGATION
DIRECTION OF RECORDED WAVE FIELDS

The analysis of the last section has demonstrated that there are distinct limitations to the
degree to which a sound field can be accurately reproduced even over a relatively small
spatial region. A more modest objective. that can be investigated within the same
analytical framework, is that of attempting to ensure that the directional properties of the
sound field at a point (or small region of space) are preserved in the reproduced field.
Thus, simply speaking, one wishes to record the field with a number of semors close to
the point of interest and process those signals such that the direction of propagation of the
waves is, as far as possible, reproduced at an equivalent point in the listening space. This
objective is central to the operation of "surround sound" or "ambisonic" [IO] systems. Here
it will be shown that the least squares solution given above automatically ensures that
directional information will be well reproduced.

Consider the geometry illustrated in Figure 10. This shows a reproduction system which
uses 12 loudspeakers to surround a central array of 16 sensors spaced uniformly on a grid
that is only 0.045 m square. Assume that these sensors record signals due to a harmonic
plane wave at an angle 0, exactly as described in Section 3. The source inputs v(a))
necessary to ensure that the cost function 1(a)) is minimised can again be calculated by
using the solution given by equation (5). The results are shown in Figure 11 which shows
the modulus of the signals mm) for just one source and for all the sources as a function of
the angle of incidence 8 of the recorded plane wave. Results are presented at frequencies
of 100 Hz, ‘1 kHz and 10 kHz. The important feature of these results is that whatever the
frequency or angle of incidence of the recorded wave, it is always the source closest to this
angle of incidence that produces the dominant output. For waves whose angle of
incidence falls exactly between two sources, then the two sources have roughly equal
outputs, these being greater than those of any of the other sources. The least squares
solution therefore always ensures that the recorded sound will at least be radiated from
the correct direction in the reproduced field. A small value of'fi (given by r: trace
CHM) C(m) with c: 0.001) was used in order to improve the conditioning of the solution.
As shown by the results illustrated, at lOD Hz, the solution "blows up" at low frequencies
with )3 = 0, There is clearly scope for further investigation of the number of sensors and
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Figure 10 The geometrical arrangement 01 reproducing sources and recording
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b)

d)

Figure 11

   
The output oi the sources in the reproduction system illustrated in
Figure 10 as a function of the angle 6 of the incident plane wave.
results are shown in the form oi |vm(u))| as a polar plot on a linear scale
for all the sources in the array and for a single source in the array. At
a) 100Hz with e = 0, b) at 100Hz with e = 0.001. c) at 1kHz with
a = 0.001 . d) at tokHz with s = 07001.
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sourcs necessary in such a system to ensure the most accurate reproduction of directional

information with minimum processing power.

6. FREQUENCYDOMAIN CHARACTERISTICS

OF THE OPTIMAL FILTERS

The frequency domain derivation of the source input signals necessary for optimal
reproduction of the sound field can also be interpreted as a technique for designing a

matrix of linear filters which is used to operate on the recorded signals in order to produce

the source input signals. This can most easily be understood with reference to Figure 3:

the filter matrix H operates on the recorded signal vector u in order to produce the source

input signal vector v. Here the realisability of the filters in this matrix will be considered,

again by using an analysis in the frequency domain. However, it will prove convenient to

assume that the filters operate in discrete time on sampled input signals The frequency

domain cost function to be minimised can be written as

Hill”) = eHW") cw“) + B v”(d""l v(d""), ('10)

where ed“) and v(ej“’) are vectors containing the Fourier transforms of the sampled error

signals and sampled source input signals. It follows that the minimum value of this cost

function (see equation (5)) is produced by the source input vector

vo(ej"’) = [CH(ei"’) ch-Jw) + pi]'1 cHo'n’) Mm). (11)

This therefore relates vow”) to the desired signal vector dial“). However, according to

Figure 3, the vector d(e"‘”) is related to the recorded signal vector u(d°’) by

d(d"") = Mei“) u(rj"’) where the filter matrix Mei“) can be chosen at will. It therefore
follows that

woof”) = [C“(rj“’) cw”) + 31]" CHM”) Md") u(d""). (12)

If it is now assumed that the optimal source input signals v.43“) are produced by

operating on Mei”) with a matrix of "optimal filters" HOG“) such that

new) = HM“) mini), . (13)

then it follows that the optimal filler matrix is given by

How”) = [crude C(zinri + 131]" cthw) Away (14)
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For the purposes of appraising the realisability of the filters in this matrix the substitution
2 = ein’will be made, where z is the z transform variable. It will also be assumed that the
transfer functions C1,,.(z) relating the signal at the M location in the reproduced field to
the m'th source input has the form

poz—Alm

41(R1m

 

C1,,,(z) = (l5)

where A1,, is the number of samples of delay produced by the acoustic propagation from
the m'th source to the l'th field location; the transfer function is again simply that which
relates the pressure at the field location to the volume acceleration of the source. For the
purposes of this analysis it will also be assumed that A1,, is always an integer number of
samples delay.

A particular geometry consisting of 2 sources and 3 sensors is studied in detail in
Appendix 1. It is demonstrated there that the causality of the optimal filters can be
ensured by choosing the matrix A(z) to consist of a diagonal matrix of "modelling delays"
of A samples duration such that A(z) = I z". The m,k'th element of the matrix H(z) takes
the general form

a z—AdetHmrtz){*1_ hr“ _ (72242 I I WM]mm 2-4. (16)

Note that the term in the square brackets is common to all the elements of H and is given
by ‘l/dethHu) C(z) + fl I]. It is demonstrated in Appendix 1 that the inverse of this
determinant can be expressed in this form, where AM is the largest pasitive value of
exponent of 2 that results fromexpanding the determinant. The order N of the
denominator polynomial in equation (16) is given by M x K. Evaluation of the adjoint of
the matrix [CH(2) C(z) + fil] produces elements fmktz) of this adjoint matrix which have the
general form

mez)=n1 241 +112 2A2..a1zAl. (17)

If Andi denotes the maximum positive value of any of the A.- appearing in any of the
elements fmflz) of the adjoint matrix, then it is clear that all the filters comprising H62) can
be made causal by choosing the modelling delay A such that A > (And,- - Ad“).

The stability however of all these filters is determined by the denominator polynomial in
equation (1 6). Thus all the zeros of this polynomial (the poles of the system) must lie
within the unit circle in the complex z—plane. However, the particular form of the
determinant of the matrix [CH(z)C(z) + [it] suggests that any system designed in the
frequency domain, which uses more sensors for recording than sources for reproduction,
will rwt yield a stable system in the time domain. In the particular case of 3 sensors and 2
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Figure 12

z-piane

   

X2(m)

source 1 source 2

 

The two source/three sensor geometry used in the study of the

stability of the optimal filters. The sources and sensors are all

situated on the x1 axis in the coordinate positions shown. The

positions 01 the system poles in the z-plane are also shown. Note

that tor every pole inside the unit circle. there is a pole outside.
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sources that is examined in detail in Appendix 1, note that equation (A16) can be written
in the form

dethH(z)C(z) + fit] = cu + t:l(z-d1 +211) + 1:2(z'd2 +zd2) + t:3(z'd2 +213), (18)

where the delays d1, d; and d3 are defined by equations (A17). This particular Form of the
denominator polynomial has zeros (and thus polesof the system) which are arranged in
pairs, with each zero inside the unit circle in the z-plane being associated with a zero

outside the unit circle. Thus for any zero of equation (‘18) in the z-plane at z = rod-9 , there

will also be a corresponding zero at z = (1/70)” . i.e., at the conjugate reciprocal location
in the z-plane. That this must be so follows directly from the form of equation (18) which
still holds if z is replaced by (1 /z‘). A two source-three sensor geometry is illustrated in
Figure 12 together with a plot of the z-plane showing the corresponding zeros of equation
(18). These zeros are thus the poles of all the filters Hmkb); the existence of poles outside
the unit circle implies that all the elements of H(z) will be unstable. This also appears to be
the case for any system which involves inversion of the matrix CH(2)C(z), since this
product seems always to result in a determinant having the general form of equation (1 B).

It also appears, however, that a system which uses the same number of sources and
sensors can be made stable, depending upon the geometry chosen. For example, in the
case ofa 2 source—2 sensor system it can readily be shown that the filter matrix H(z) can be
made stable (and causal) when the optimal value chosen is simply given by
Ho(z) = Cl(z)A(z), again depending on the choice of geometrical arrangement. Although a
thorough investigation of the realisability of the optimal filters has yet to be undertaken,
preliminary investigations also suggest that "square" systems consisting of 4 sources and 4
sensors can also be made stable. However, the general rules governing the choice of
geometry have yet to be established. in cases where the frequency domain analysis
suggests that the filters required are unrealisable, it is still always possible to seek a "least
squares" solution to the problem in the time domain. This involves finding the filters that
are constrained to be causal and stable and which minimise the mean square error
between the desired and reproduced signals. This approach is discussed in the next
section.

7. PRACTICAL FILTER DESIGN METHODS; FIR FILTERS

Whilst the analyses of the previous sections have succeeded in throwing some light on the
nature of the filters required for the processing of the recorded signals, filters designed on
a purely analytical basis will not make use of the full capability of modern signal
processing techniques. The very considerable drawback associated with the direct
application of the theory outlined above is, of course, that it assumes both ideal sources for
reproduction and an ideal (anechoic) response of the listening space in which the sound is
reproduced. Both of these factors can, in practical applications, be compensated for by
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using a simple on-line filter design procedure. Thus, the effective inversion of the "on-
axis“ frequency response functions of the_loudspeakers used for reproduction can be
accomplished relatively easily [ii]. The effective inversion of the response of the space in

which the sound is reproduced can also be accomplished, at least on a pointwise basis [12]

but it is perhaps debatable whether in the majority of applications this is a worthwhile
procedure. It is well known that human hearing exhibits a well-defined "precedence
effect" [13] and localization of sources will very much be determined by the earliest
arriving sound. In some cases therefore, it may be of benefit simply to disregard the
response of the listening space and focus effort on obtaining accurate reproduction of the
recorded signals by using the direct field radiated by the sources used for reproduction.

In an event, it is in principle relatively easy to deduce the matrix H of optimal filters by
using the recorded signals and by making measurements of the reproduced field, the latter
being undertaken either under anechoic conditions or in the listening space to be used. It
is firstly assumed that the matrix H consists of FIR filters. Thus although the analysis of
the previous section has demonstrated that H has an intrinsically recursive structure, it is
assumed that a sufficient number of coefficients are used in each of the elements of H to
ensure that their impulse responses are of requisite duration.

The analysis presented below follows that in reference [1]. First the "filtered reference
signals" are defined. These are the signals generated by passing the k'th recorded signal
who) through the transfer function Cme) which comprises the I'm'th element of the
matrix C(w). This signal is denoted rzmkhu). The generation of the filtered reference signal
can be explained with reference to the block diagram of Figure 3. Since the system is
linear, the operation of the elements of the transfer functions HQ») andC(10) can be
reversed. This is illustrated in Figure 13. In discrete time, the sampled signal reproduced
at the I'th location in the sound field can be written as

K M

2.0:): 2 2 51mm), (19)
k=1m=l

where the signal srmfln) is defined by

1-1

srmk(n)= )3 hmwnmun—o. (20)»
i = O

and hm“) is the i'th coefficient of the FIR filter processing the k'th recorded signal to
produce the m'th source input signal (see Figure ‘12). Each of the FIR filters is assumed to

have an impulse response 0“ samples in duration. Thus the signalafln) can also be
written as
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The reversal oi operation 01 the elements of the matrices H(w) and
6(0)) which leads to the definition 01 the filtered reference signals
rmkm) and the filtered output signals s,Mk(w). Note that d,(co)
consists of contributions due to all K recorded signals.

Figure 13
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K M

21(n)= 2 2 hmtTnmkm), (21)
k=lm=1

where the vectors hmk and rymk(n) are defined by

hka =[hmktm hmkfi) Izmrlz)....h,,,k(I-l)], (22)

nka(n) = [nmkbll "mm - 1) nmAn: 2). r wot — 1 + 1) ]. (23)

The following composite vectors are now defined

hT = [hnT h12T. .h1KT “121T huT. . hsz . . thIT thT r rhMK-l], (24)

rTi(n) = [I’m-r01).rl’nKT(H)lrmT(n)...r12xT(n)l.. lriMle) nMxT(n)],
(25)

3%) = [2101) 7120)) .... ..?1L(n)], (26)

together with the matrix

R701) = [r1(n) r201) . . .‘.rL(n)]. (27)

These definitions are used in Appendix 2 to find the solution for the optimal set of

coefficients in the composite vector h that minimises the time averaged sum of squared

errors between the desired and reproduced signals, The cost function minimised is given

by

1: apnoea.) + BvTinlvblll, (25)

where the error vector e<n) = d(n) - 301) and the second term in the cost function weights
the effort associated with the source input signals It is demonstrated in Appendix 2, that

if all the recorded signals comprising the vector nor) are assumed to be mutually

uncorrelated white noise sequences with a mean square value of 02, then equation (28)

reduces to the form ’

I: hT{E[RT(n) rum] + pal I] h— 2 E[dT(n) mm] + E[dT(n)d(n)]l (29)
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The positive definiteness of the matrix {E[R_T(n) R(n)] + [3 a‘2 l} ensures the existence of a

unique minimum of this function. This is defined by the optimal composite tap weight
vector and associated minimum value of I given by

it, = {spoon mm] + 3 oz 1}“ chm") d(n)]. (30)

1,: E dT(n)d(n)]—E dT(n) km] {E[rrT(n)x(n)] +1302 1}“ E[RT(n)d(n)]r (31)

Equation (30) therefore defines the optimal values of all the coefficients in the filters that
comprise the matrix H. One way to determine these coefficients is obviously by direct
inversion of the matrix in equation (30). However this matrix is clearly of high order,
being of dimension Ix M x K‘ Another approach is to use the LMS algorithm, extended
for use withmultiple errors by Elliott and Nelson [14,15]. It is demonstrated in Appendix
2 that the algorithm can be written in the form

h(n +1): 7h(n) + aRT(n)e(n) , (32)

where a is a convergence coefficient and yis a"leak coefficient" whose value is directly
related to the penalisation of effort associated with the parameter fl,

8‘ THE APPLICATION OF AN FIR FILTER MATRIX

The above on-line filter design technique has been used successfully in the practical
implementation of a system for reproducing signals recorded at two points in space by
using two sources for reproduction [161‘ Full details of this "cross-talk cancellation
system" are given in reference [16] together with measurements of the spatial effectiveness
of the technique. Some other examples of the application of this filter design method are
also presented in reference [171‘ As a further illustration of the use of this least squares
technique in the time domain, it has been used in a computer simulation to design a
causal, stable realisation of the filter matrix H used to operate on the signals recorded by
four sensors in order to provide the inputs to four sources used to "reconstruct optimally"
the direction of arrival of the waves in the region in which the recordings were made.
Note that the four sensorsare placed in a square array ofdimension 0.1 m, as illustrated in
Figure '14. The effective sample rate used was 34 kHz. This enabled the matrix C(z) to be
approximated to good accuracy by transfer functions of the fomi of equation (15) with Ar,"

given by the closest integer value to le/co, where to = 344 m/s. The delays A1,” were

thus all in the range between 270 and 290 samples and the matrix A(z) was assumed to be

Iz" with the modelling delay A set equal to 350 samples Each of the filters in H(z) was
assumed to have 128 coefficients.
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lem)

Source 1 (-2, 2) . . Source 2 (2. 2)

 

Source 3 (-2, -2) . . Source 4 (2, ~2)

Figure 14 The geometrical arrrangement oi reproducing sources and recording
transducers used lorthe design oi a causal. static realisation ol the
optimal filter matrix H . Four sources were usedin the coordinate
positions shown together with tour sensors spaced 0,1m apan on a
square grid.
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Figure 15 The impulse responses of four of the optimal fillers designed using
the geometry of Figure 14, The impulse responses are shown
corresponding to a)H11 (z) b) H,2(z) c) H13(z) d) H" (z).
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Figure 15 shows the impulse responses of the filters Hn(z),Hu(z), anz) and H”(z): i.e.,

the filters that operate on the four recorded signals 14101) to 144m) and whose outputs are

added together to produce the signal I), (n) input to source 1. Having designed these filters

by using the algorithm in equation (32), their effectiveness in producing the appropriate

value of 11101) was evaluated by assuming that the recorded signals 14,01) to 11401) were

produced by plane waves falling on the sensor array at an angle 9 (Figure 2). The waves

were assumed to produce a white noise sequence, with a power spectral density of unity,

the same sequence being recorded by each sensor but all differing by delays that are a

function of only 9. The power spectral density swims) of the sequence v10!) could then

be calculated from

51,] a] (0,9) =

. q I 2

Hn(d"’ie‘l""51(9) + H12(e’"’)e1'm2(°) + H,3(dw)e‘iws(e)+ H14(el"’)e'lm4(9) I ,
(33)

where A1(9) to A4(9) are the delays (in integer numbers of samples) produced in the white

noise sequence recorded by the sensors when the incident plane waves arrive at an angle

9. Figure 16 shows 50101048), the power spectral density of the input signal to source 1,

as a function of both frequency and the angle of incidence 0 of the recorded waves.

Clearly at very low frequencies (30 Hz), the source produces an output irrespective of 0,

which one might anticipate when the distance between the sensors is very small compared

to the wavelength of the incident field. At frequencies up to about 1500 Hz the source

only produces an output for waves falling in the range of angles of incidence which can

effectively be reproduced by the source. Above this frequency, the effect of inadequate

spatial sampling of the field becomes apparent and the source will produce an output for

waves having angles of incidence that the source cannot hope to reproduce. These results

again emphasise the requirement to comply with the sampling theorem by having the

recording sensors spaced apart by less than one half (and preferably one third) of an

acoustic wavelength at the highest frequency of interest. Nevertheless, the results show

considerable promise and the technique clearly offers scope for refinement.

9, PRACTICAL FILTER DESIGN METHODS; IIR FILTERS

Whilst the adaptive design of FIR filters is clearly a successful approach to the problem,

since the filters required are intrinsically recursive, one is also led to consider the use of
adaptive recursive filters. These offer considerable scope for improvements in the

efficiency with which the filters can be implemented. There are, however, difficulties

involved in their design. There are essentially two classes of adaptive recursive filter;
"output error" and "equation error" types (see the review by Shynk [18]). The application

of these classes of filter is considered in Appendix 3 and Appendix 4 respectively. In the

case of "output error" adaptive filters one simply replaces each of the elements of H with a

72 Proc.l.O.A. Vol 15 Part 3 (1993)



  

Proceedings of the Institute of Acoustics

ACTIVE CONTROL OF ACOUSTIC FIELDS ANDTHE REPRODUCTION OF SOUND

a) 10 30H

  
 

Figure 16 The power spectral density of the sequence v1(n) inputto source 1

ol Figure 14 when plane waves producing a white noise sequence
is recorded by the tour sensors shown in Figure 14 and processed
using the optimal filter matrix H . The power spectral density is
shown as a polar plot as a function of 6 on a linear scale at a) 30H:
b) 180Hz c) 800Hz d) 1730Hz.

Proc.|.0.A. Val 15 Part 3 (1993) 73

 



 

Proceedings of the Institute of Acoustics

ACTIVE CONTROLOF ACOUSHC FIELDS AND THE REPRODUCI'ION OF SOUND

recursive filter. It is shown in Appendix 3 that, by makingsome fairly gross assumptions,

an algorithm can be derived that is directly analogous to that given by equation (32). This
amounts to the multi-channel generalisation of the simple algorithm presented by

Feintuch [19] which was first generalised for use withmultiple errors by Elliott and

Nelson [20]. However the use of filters with this architecture does not guarantee either the

existence of a unique minimum or a stable convergence. A more attractive alternative is

that described in Appendix 4 in which is used the "equation error" approach together with

the filter architecture illustrated in Figure 17. In this case all the filters are assumed to
have common poles, consistent with the analysis of Section 4. In addition, the quadratic

cost function minimised has a unique minimum, although there may be problems with

bias in the solutions reached, especially if high levels of noise are present.

As shown in Appendix 4, one first defines the coefficients of each of the filters Amk and B

illustrated in Figure 17by

aka =V[11,”,(0)amillhmkfziuamku- 1)], (34)

bT = IMO) [7(1) 11(2) HI - 1)]. (35)

A composite vector of coefficients is then defined (analogous to h defined by equation

(24)) such that ’

gT = [an'r alZT alKT|321T anT .11le IaMl'r aMzT,.. aMKTI b1]. (36)

Similarly. by analogy with the definition of mm) given by equation (7.5), one defines the

composite vector

q1T(n)=[rm-rm)..r,m(n)lr,217(n),.r12KT(n)I t. lrwnTm) it rlMKTmll rill-(11)],
(37)

and the matrix 001) (by analogy with 1101)) such that

QT(n) = [q,(n) qz(n) .. qL(n)]. (38)

The composite vector of coefficients 3 is then found that minimises the cost function

J: EIe,T(n)e,(n) + fivanMnH, (39)

where e,(n) is the "equation error" vectordefined by

e,(n) = d(n) - Q(n)g. ' (40)

As argued in Appendix 4, an algorithm which can be used to minimise the cost function

defined by equation (39) is given by
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(b)

   
S'IMkUD)

Figure 17 The “reversed transfer lunction" form 01 the block diagram when the
elements of H are implemented as recursive filters. All the filters are
given identical recursive pans as shown in (a) which enables the
block diagram to be redrawn asin (b).
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50: + l) = 730:) + aQT(n)e,(n) , (41)

which is clearly analogous to equation (32). Initial simulations of this algorithm have been

undertaken and demonstrate that the algorithm can be made to converge, but its

advantages in efficiency of filter implementation have yet to be clearly demonstrated.

10. IMPROVEMENT OF EXISTING STEREOI’HONIC

SOUND REPRODUCTION SYSTEMS

In all of the strategies discussed above it has been assumed that in order to reproduce a

given field, a number of measurements can be made of that field in order to provide the

requisite information for the recorded signal vector u. It has to be faced, however that

virtually none of the existing techniques used for sound reproduction use the methods

described. The vast industry involved in recording and reproducing sound relies almost

exclusively on the conventional approach to "intensity stereo". Thus particular signals are
attributed to the two channels of a given stereo recording in order that the relative

intensities radiated by two loudspeakers gives an impression that the source of the

original signal is located in a certain position. However, as described by Moore [13], the
benefits of stereophonic reproduction (as compared to monophonic reproduction) are
more connected with improved clarity and definition of the original signals, rather than
with localisation of the original sources, which is often quite imprecise It is quite well

established. however. that the benefits afforded by conventional stereophony are
degraded when the listener is not located centrally on the axis that bisects the two

loudspeakers. This degradation is largely due to the operation of the precedence effect; as
the listener moves closer to one loudspeaker, the sound radiated by that loudspeaker will

arrive at the listener before that radiated by the other loudspeaker. It the time disparity

between the two signal arrivals exceeds 1 ms, the sound will appear to originate

exclusively from the nearest loudspeaker. Moore [13] calculates that deviations of greater
than about 60 cm from the central position, will, under normal listening conditions, result

in "significant changes in the stereo image".

There are a number of practical situations where a listener is constrained to be in an off-

central "non—ideal" listening position. The loudspeakers used for stereophonic
reproduction in a car, for example, are by necessity. very often located asymmetrically
with respect to the driver. it may be useful to note. therefore, that the general formulation
presented above can be employed to design a matrix of filters that operates on
conventionally recorded stereo signals in order to compensate explicitly for the non-ideal

positions of loudspeakers relative to a listener. The approach taken is to specify the
geometric position of a pair of "virtual sources" relative to a listener in a given position.
The virtual sources are in an ideal position relative to the listener. The desired signals are
then those which would be produced at the ears of the listener by the virtual sources. This

automatically allows the specification of the matrix A which relates the recorded signals to
the desired signals. The recorded signals are the two channels of the conventionally
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a ) Virtual mm) Virtual
source 1 Source 1 Source 2 source 2

G O O (5)

(-0.58.1)(-o.2s.o.97) (0.26.0.97) (0.58.1)

b
) Virtual x20“) Virtual

source 1 Source 1 Source 2 source 2

O O

(-o.5s,1) (-052.03?) (0.097) (0.58.1)

0.2m

Figure 18 Examples of two geometrical arrangements of real and virtual
sources. The matrix A is specified in terms 01 the geometry of the
virtual sources relative to the ears of a listener.
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recorded stereo signals and the elements of the matrix A are simply the transfer functions
of the transmission paths from the virtual sources to the ears of the listener. Thus, with

reference to the geometry illustrated in Figure 13, working in discrete time allows the
matrix A(z) to be written as

rAn z-Azi

Du R11 R21A(z)=fi rm 2422 . (42)
R12 R22

where it is again assumed that the acoustic travel times are an integer number of samples
A1,... Having specified the desired signals in terms of this matrix, it is possible to determine
the 2 x 2 matrix of filters H which is used to operate on the two channels of the

conventional stereo recording. The two outputs of this filter matrix are the input signals to

the two sources. The question then arises as to the spatial effectiveness of this technique.

It is certainly possible to produce very close approximations to the desired signals at the
two specified points, but one is clearly interested in evaluating the spatial extent of this
effect as one moves to other positions in the sound field.

The results of computer simulations designed to evaluate this are shown in Figure 19. The

results presented correspond to the two geometries illustrated in Figure 18 and show

contours of constant mean square error when the optimally designed filter matrix l-I‘7 is

used to give the best possible approximation to the desired signals specified via the matrix

A in equation (42). Thus the contours show

1/102 = 5M") e(n)] / E[dT(n) am]. (43)

expressed in decibels The plots show the effectiveness with which the desired signal at
one microphone is reproduced at positions in the vicinity of that microphone. Results are

presented when the signal to be equalised is limited to different bandwidths. (Full details
of these computer simulations are presented by Orduna-Bustamante at al [21].) It is clear
from the results, which show the effectiveness of the reproduction of the desired signal

over a 0,4 m x 0.4 m region, that the zones of reproduction scale approximately in size
with the acoustic wavelength at the maximum frequency in the signal. In fact. it is
interesting to observe that zones of a practicable size are produced for signals having a

maximum frequency between i and 2 kHz. This is just the frequency range in which the
human auditory system ceases to make use of arrival time differences between the signals
arriving at the two ears in localising sources [13]. Above this frequency range, crudely
speaking it is mostly intensity differences which aid localisation. It may be, therefore, that
the techniques suggested here have some possibilities for improvement in stereophonic
imaging; they await psychoacoustical evaluation.
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3)

f < lkHz f < ZkHz f < 4kHz

0

O

S

b)

f < lkHz f < ZkHz

  
Figure 19 The spatial extent oi the effectiveness with which poorly positioned

real sources can be used to reproduce the field due to ideally placed
virtual sources. The contours show values oi the cost function given
by equation [43] when evaluated over different (low pass) bandwidths
in 5dB steps below OdB, which is the outermost contour illustrated
(values higher than OdB are not shown). Results are shown for the
geometries a) and b) of Figure 18 over a 0.4m square grid centred
on the 2 microphones.
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11. CONCLUSIONS

Least squares techniques that have proved so useful in the study of the active control of

sound have been applied specifically to problems in sound reproduction. The general

philosophy adopted is to design a matrix of linear filters that operates on a number of

recorded signals in order to deduce the signals input to a number of sources used to

reproduce the field. Whilst it has been demonstrated that the reproduction of a field over

a restricted spatial region is a realistic possibility over a limited frequency range. it is

suggested that the reproduction of directional information may provide a more practicable

objective A discussion has been presented of practical techniques for the design of the

optimal filter matrix and some suggestions have been given for the improvement of

existing stereophonic reproduction systems.
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APPENDIX ‘1

THE OPTIMAL FILTER MATRIX IN THE 2-SOURCE/ ErLOCATION CASE

The stmcture of Ha(z) can now be examined with reference to a specific example. Assume

that 2 sources are used to reproduce the field at 3 locations. The matrix C(z) then has the

form

z—An z-Aiz

R11 R12

C(z)=f—" fl in , (AM)
“ R21 R22

r432 z-A32

R31 R32

and the matrix to be inverted is given by

[CH(z)C(z) + p I] = (2%):
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(An — 412) 2021 -A12)1 I I zlASI 'A32_+—+___
R'llRlI RZIRZZ R31R32

—+———+—+
R112 Rziz R312 [3

All - A‘l2) 2462]- A22) z—(A31 — A32 1 1 I B (A12)
—+-—+—— —+— +— +
RnRu R21R22 R31R32 (R122 R222 R 312 )

The optimal filter matrix can be written as

'1
Hum (A13)=——d'CH()C() icH()A().dctCle)CH(z)+Bl]a][ z Zw] z Z

where the symbols "det" and "adj" refer to the deten'ninant and adjoint of the matrix
respectively. The numerator of this expression is a matrix of FIR filters. These filters can
be made causal by choosing A(z) to consist ofa diagonal matrix of "modelling delays" [16]
having the transfer function z'A. Thus if we choose A(:) to be z-A I, such that the desired
signals d(z) are simply delayed versions of the recorded signals u(:), the numerator matrix
reduces to the form

H anz‘A an?“ “132'A
d'cH: C l C A = , AMa}[ () (z)+fi] (z) (z) “2124 “MFA mfl ( )

where, for example,

1 1 1 2A” (An—A12) 20321-1322) zmai-Aaa A12 (A15)

ail—(R122+R222+R322+fi)R11_ RIIRIZ + RZIRzz + R31R32 Riz' ‘

Thus, irrespective of the values of the delays A1,". provided the modelling delay A is
chosen to be sufficiently large, the filters in the numerator matrix can be made Causal,
since a term of the form 2”" ‘13) will represent a delay in discrete time provided A > A".

The denominator of equation (A13), given by the determinant of [CH(2) C(z) + p I], also
has an influence on the choice of modelling delay A, The realisability of the filters in Ham
is also dictated by the form of this determinant. The zeros of the determinant will give the
poles of the filters in Halz). Provided these poles lie inside the unit circle, the filters will be
stable, In the specific case considered here,

dct[C”(z) (3(2) + p r ]

1 1 1 )(Rt 1 1 ) ( 1 1 i )= .—., . ., + _ —— —+———
(Rn Rzi2 R3]: p 12PM: R32 I, (RnRulananz 0‘31th
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241+zdi z‘"2+zdz I rd3+zdS
— —.+——~ +—-—— (A16)
RnerRziRzz RanzRaiRaz R21R22R31R32

where the delays in thisvexpression are given by

111 = (A21 - A22) - (A11- A12).
112 = (A3] — A32) — (An — A12), ' (A17)

113 =(A31 -A32) - (A21 -A22)r

Note that the determinant inevitably contains terms such as 2‘11 which represent a forward

shift in time (or if d] is negative for a given geometry, 2“! will represent a forward shift).

The determinant can however be reduced. to a polynomial in only the backward shift

operator :‘1 through multiplication by a tem z—Adtl where Add is equal to the largest

positive value of :11, 112 or d;. Thus the reciprocal of the determinant can be written as

1

del[CH(z)C(:) +131] =

a 2’4!“

1 — b, z-Auu + b; 1754:: 4 31) , hymn-n41) + 53 24.1mm». b3 14%, .gz) + raking), (ALB)

  

where the coefficients in this expression are given by

a = - RZIRZZRSIRJZ ,
‘l I I 1 1 1

b1: R21R22R31R32[(W+-R2—12+F12+fi)(m+ F22+ R—flr-fi)

1 1 1
_((R11R12)2 + (lierzzl2 + (RarRazlzfi'

172 = Reraz/Rner ,
in = RziRzz/Rner- (Al-9)

Thus the appearance of the term z-Adet in the numerator of this expression reduces the

value of modelling delay A required to ensue that the matrix of filters remains causal. The

stability of the system is now determined by finding the roots of the denominator

polynomial in equation (Al.8). Note that this is determined entirely by the geometry of

the system usedfor recording and reproduction.
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APPENDIX 2
ADAPTIVE FIR FILTERS

Equation (21) of the main text can be rewritten

2.0:) = HT(fl)h. (AZJ)

by using the definitions of the composite vectors h and r101) given in equations (24) and
(25). Furthermore, if we define the composite vector 30:) as

3%) = [310.)2200 . , . hm], (A22)

one can write

am = R(n) h. (A23)

where the matrix R(n) is defined by

an") = [mm 1201) . .n(n)]r (A24)

The optimal value of the composite tap weight vector h is now sought which minimises
the time averaged sum of the squared error signals and the source input signals, the latter
being included in order to penalise the "effort" associated with the source input signals at
the optimal solution. The following cost function is minimised;

;= E[eT(n) e01) + pm") my], (A25)

Note that both the contributions to the cost function can be written in terms of the
composite tap weight vector h. Thus using equation (A23) shows that the vector of
sampled error signals can be written as

e(n) = at") —&(n) = aon- no) h. (A26)
In addition, the m'lh sampled source input signal can be written as

vm(n) = hmT u1(n)+ ltsz uz(n) . ,hka uiln). (A27)

where the vectors min) are the recorded signal sequences defined by

uthn) = [ammo — l) . r r . um — I + 1)]. (A23)
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Defining the composite vectors

hmT =[hm1T hsz r ' hmk'l’], I (A23)

wT(n) = [u1T(n) u2T(n) . . ukTin)], (A110)

leads to the expression

E[v,,.2(n)] = hmT E[W(n) wT(n)] hm . (A2.ll)

If all the recorded signals uk(n) are modelled as uncorrelated white noise sequences all

having a mean squared value of a“2 then E [w(n) wT(n)] = a2 I Under these conditions

M M

E[vT(n) mo] = Z E[vm2(n)] = Z a? hTm h," = a2 hT h, (A112)
m =1m=l

where h is the composite tap weight vector defined by equation (24) of the main text.

Thus the cost function for minimisation can be written as

I: £[eT(n)e(n)] + [302 Mb, (A213)

which on substitution of equation (A16) reduces to l

1: M {£[nTtm mm] + p oz 1} h — 2E[dT(n) Rm] h + E[dT(n) don]. (A214)

The minimum of this cost function is defined by

h, = {E[RT(n) mm] + fl oz 1}" E[RT(n) d(n)], (A215)

1,, = E[dT(n) d(n)] — E[dT(n) Rm] {EIRT(n) R(n)l + p a? 1}‘1 E[RT(n) d(n)]_ (A116)

An efficient means of converging adaptively to the minimum of this cost function is given

by the Multiple Error LMS algorithm [is]. This follows from application of the method of

steepest descent First note that the gradient of the cost function with respect to h can be

written as

31—1=2E[RT(H)R(N)h—RT(n)d(n)]+02 ph, (A117)
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which upon using equation (A16) can be written as

31: 02 pit—2 EfnTtn) 201)], (A118)

The classical assumption used in the derivation of the LMS algorithm is now made [22]
and the composite tap weight vector is updated every sample by an amount proportional to
the negative of the instantaneous value of the gradient vector. This leads to the tap weight
update equation

1.0. +1)=h(n)—u{a2phtn)-2rtT(n)etnj, (A219)

where ,u isa convergence coefficient. This can also be written as

Mr: + 1) = 7 Mn) + aRT(n)e(n), (A220)

where a = 2 u and y: (l - u a2 B). This equation is now in the form of the "leaky" LMS
algorithm [22] where the factor y(< l) ensures that the algorithm continuously searchs for
the "least effort" solution by slightly reducing the value of all the tap weights at each
iteration. As pointed out in reference [15], it is interesting to observe that this is a direct
consequence of including the "effort" term in the cost function,

APPENDIX 3
"OUTPUT ERROR" ADAPTIVE llR FILTERS

Since the analysis presented in Section 4 has demonstrated the intrinsically recursive
nature of the optimal filters necessary to process the recorded signals, it is worthwhile to
consider briefly the possibilities for using adaptive llR filters as elements of the matrix H.
Thus it can be assumed that equation (20) of the main text, which describes the input-
output relationship of the m k‘th element of H, can be written in the form

1-1 [—1

51mm 2 amuonmrtn-m 2 l‘mt-(l) Slmk(7l- 1', (A31)
1' = o ,' = 1

where as illustrated in Figure 15, the coefficients am“) and bmkq) characterise the forward
and recursive parts of the filter respectively. One is tempted to try to deduce values of
these filter coefficients by again proceeding using the methodology of the previous
section. Thus one can write the signal 51mm) as the inner product

slmktn) = fka p'mt-(nl , (A32)

by using the definition of the vectors given by
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{ka = [a,,.k(0) mm a . .amkU— l) llama) bmktz) . . .bmkq— 1)] , (A33)

pimkm) = [nmixriI nmk(n — l) . . ri,,.k(n -1+ ‘1) Isymfln — 2). . simk(n —]+ 1)], (A14)

and then defining the composite vectors f and mm) by direct analogy with equations (24)

and (25) respectively. Thus ’

(T = [fan12T..f1KTII21Tf22T..{2xTI.. , IrM.T (MIT .. {WT}, (A35)

p1T(n) = [pniT(n) i .anT(n) Ime(n) . .puKTth. ‘ i Ilethn) . . piMxT(n)].

(A16)

This in turn leads to the definition of P(n) by analogy with equation (A24). This is given

by

PT(n) =[p1(n)p2(n) , ,thni]. (A37)

One could again choose to minimise a cost function of the form of (A25). In penalising

"effort" however, it is not possible to justifiably proceed to the analogous form of equation

(A213) which neatly expresses the effort in terms of the sum of the squares of all the

coefficients of the FIR filters comprising H. This is the case since the analogous ion-n5 of

equation (A27) and (A28) will include the filter output sequences and equation (A212)

(with h replaced by 1) would only follow if the filter outputs could be assumed to be white

and to be uncorrelated with their inputs, even in the case of white recorded signals

Nevertheless one may regard a2 IT f as some crude approximation to the sum of squared

values of 11mm), in which case the analogous cost function to be minimised could be

written as

I: (T {mum Wm] + p 021} f- 2 Han") rm] n E [dT(n) (101)]. (A18)

This has the appearance of a quadratic dependence on the composite coefficient vector in

which contains all the coefficients of all the M x K recursive filters

Unfortunately, however the existence of a unique minimum and "quadratic shape" of the

function is not ensured, due to the nature of E[l’T(n) l'(n)I which now includes cross- and

auto- correlations between the filtered reference signals nmkhi) and the output signals

simian). Despite this, one can again make some crude approximations to the instantaneous

estimate of the gradient of the function and derive an algorithm which is directly

analogous to equation (A210). First note that the instantaneous estimate of the gradient of

I with respect to the composite vector f can be written

36 I Pmc.l,OiA. Vol 15 Part 3 (1993)
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L
a
3 2 e12(n)= 2 zero) 9f , (A33)

where the gradient vectors (MOO/at consist of contributions from the sub-vectors
&1(n)/¢9f,,,k. Since

K M

8:01) = 4100- E 2 51mm), (113.10)
k =1!!! =1

then it follows that

Be:(n)_ amt")
m—-W, (A311)

where the sub-vector on the right side of this equation is given by

asimk(n)_[asimk(n) 351mm) 351mm) |3slmk(n) ammo» ]T
Bfmk ‘ aamkw) aFmK1)-H'aflmk(l-l) abmmrwabmiU—i)

(A112)

It follows from equation (All) that

a ,4) H a ( ')g I 5 . _

fifi= ’7mlr("- x) + 2 lam-(p W. (A3113)
i=1

. H
a (n) ~a 01—") ..flame—11+ .2 bmk(;)—s:§"Lk—Mq—.)J— ;: ;. (A314)

,-=1

These equations constitute recursive relationships for the gradients of 51mm!) with respect
to am“) and bmkq). A number of approximations are now possible, including the use of
these relationships in deriving a coefficient vector update equation (see the discussion
presented in [22] regarding the scalar case). The simplest assumption, however, is that
adopted by Feintuch [19] in the scalar case and extended to the multi-channel case by
Elliott and Nelson [20]. This simply ignores the second terms on the right side of
equations (A3.13) and (A1114), such that equation (A312) becomes

8 spmfln)

3f mk

 

= [7,,nlln) . . . "mm —1+1) 151mm —1).._.s,,,,k(n —/+1) ]T = lekbl). (A115)
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It then follows that anon/at = - pm), Where, as mentioned above, p1(n) is defined by

analogy with equation (25) of the main text. - Equation (A33) can thus be written

L

3% 2 221(n)p1(n) =—2 PT(n) ((n) . (A316)
1:]

if this instantaneous estimate of the gradient of the cost function is now used, together

with the gradient of the effort term, then the coefficient update equation that is exactly

analogous to equation (A220) is given by

Kit + l) = yf(n) + a PT(n) e01). (A117)

In view of the indeterminate form of the function whose "minimum" this algorithm is

attempting to find, there is no guarantee of convergence of the algorithm and a high

chance of instability as poles associated with the recursive filters migrate outside the unit

circle during the adaptation process. Nevertheless, there is some evidence in the

application of the scalar version of this algorithm to active noise control [23] that it can be

successful in producing substantial reductions in mean square error.

APPENDIX 4
"EQUATION ERROR" ADAPTIVE HR FILTERS

Another approach to the adaptive design of HR filters is to use an "equation error"

approach [18]. A description of the application of this technique to the sound

reproduction problem in the single channel case is given by Nakaji and Nelson [24]. It

tums out that this approach also appears to be well suited to the multi-channel sound

reproduction problem. The analysis of Section 6 has demonstrated that the intrinsic

structure of the filters necessary to process the recorded signals is that of recursive filters,

but all the filters have the same denominator polynomial; it the filters have common
poles. If it is therefore assumed that the filter matrix H consists of recursive filters having

forward paths Ammo) which are purely FIR filters, together with recursive parts

characterised by the frequency response function 8(a)) which is common to all filters, then
the "reversed transfer function" block diagram of Figure 13 can be redrawn in the two

equivalent representations shown in Figure 17. it is the block diagram representation of

Figure 17b that enables the equation error approach to be taken. First note that one can

write the sampled value of the signal fiffn) defined in Figure 16 as

K M

3ft") = 2 2 .2ka Mt"), (A4.l)
It = l m :1

where the vector am is defined by
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MT = [am/((0) autumn). .amAI.—1)], ' (A42)

and rwAn) is as defined previously in equation (23) of the main text. Defining the
composite vector a by

AT = [anT a12TNa1xT|a21T 3221-. . asz I . .. Ian-HT asz . . amfl], (A43)

then enables the expression given by equation (A4.” to be written as

dim) = aTr1(n) . (A44)

where 110:) is the composite vector defined by equation (25) of the main text‘ The signal _

d1(n) can then be written as

I—1 A
31(71): aTnin) + 2 b(j)d1(n—fl , (A45)

i=1

where b(f) are the coefficients of the recursive filters common to all elements of H

The equation error approach to adaptive IlR filtering then proceeds by replacing 2101 - f)
on the right side of equation (A45) by Mr: - j); i.e. the estimate of past values of the
desired signal is replaced by past values of the desired signal itself. The following signal
is now defined

A I-l
dub!) = aTr,(n) + 2 b(j)dg(n—j). (A4.6)

[:1

This can also be written as

2,4") = aTr1(n) + de'Ov), (A47)

by defining the vectors

bT=[b(1) 17(2) 17(3) bq—n], (A43)

am") =[2.(n —1>3,(n— 2).i,(n—3) . 31,0. _;+ 1)], (A43)
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Equation (A47) can be further reduced to the form

21.01) = q1T(n)g. (A410)

where the composite vectors q,(n) and g are defined by

3T = [anT arzT- - aiKT laziT 2227- - =sz |~- "MIT iMZTuaMKT [13'].
(A411)

qu(n) =[rmT(n) I'nKT(n) “721701)” l . rim-Wt) i. . IanTOI) |d1T(n)].

(A412)

Furthermore 'one can define the vector of L signals 91,01) by the composite vector

91sz =[91,(n)32,(n) . . Egon] , (A413)

such that

Emu) = Q(n)g, (A4.14)

where the matrix (201) is defined by

QM) = [qi(n) q2(n) . . am]. «4.15)

The cost function for minimisation can be written as

1: E[e,T(n) 2,01) + woollen]. (A4.16)

where the "equation error" vector e501) is given by

2,01) = duo—214") = am) — Q(n)g. (15.4.17)

One Can again proceed to derive an algorithm for adaptively finding the minimum of the
cost function by following exactly analogous steps to those presented in Appendix 2.
Again however, as in the case of output error adaptive filters, the "effort term" in the cost

function cannot be reduced with full justification to that given in equation (A2.l2). One
has again to assume that the sum of squared filter coefficients including those in the
recursive parts, is an approximate measure of "effort". With this assumption, the cost
function for minimisation reduces to
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1: 3T {E[QT(n) eon] + pal r} 3 — 2 E[dT(n) om] g + E[dT(n) am].
' (Mia)

In this case, however, unlike that of the output error formulation, EiQTOI) Qtn)] will be a

positive definite matrix and a unique minimum to the function will exist [18]. It is also
possible to make the same assumptions regarding the evaluation of the gradient vector
81/35 as made in the FIR case. This leads directly to the coefficient updateequation

3(n +1)= 7g(n) + aQT(n)e,(n). (A4.19)

However, there is still the possibilin of instability during adaptation and it may be
necessary to monitor the poles associated with the recursive part of the filter. Note
however, that there is only one set of poles to be monitored and that represents a
significant advantage in this multi-channel case. The final drawback with this approach is
that it may lead to significant bias in the optimal solution, especially in the presence of
additive noise [18]. Nevertheless the approach seems an attractive possibility for dealing
with the problem at hand. '
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