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1. INTRODUCTION

It is the purpose of this paper to describe a theoretical framéwork which
enables a clear quantification of the possible benefits that may be obtained
from the control of sound fields by "secondary” sources. This framework is
provided by the techniques of optimisation which form one of the foundations
of modern control systems theory [l]. It is natural that these ideas should
find their place in the study of the active control of sound, although this
paper constitutes only the briefest introduction to their use.  This_type of
analysis has_been referred to only relatively recently by Roebuck [2] and
Gaudefroy [3] and used by Piraux and Nayroles [4] in their treatment of the
active control of three dimensional sound fields. The study of the active
control of mechanical vibrations, however, is more amenable to the direct
application of modern control systems theory, and extensive use has been made
of these techniques in that area of reseaxch 5]. The objective of this work
is to firstly illustrate some simple uses of optimisation theory, and

secondly to demonstrate that some useful new results can be deduced, especially
with respect to the active control of enclosed sound fields. It should be
emphasised at the outset that the theory presented below assumes a perfect
prior knowledge of the strength of the "primary" source distribution. There-
fore the results presented enable guantification of the "best that can be done”
by a given arrangement of secondary sources. These results are of course
directly applicable to practical cases involving a periodic primary source
where an explicit a-priori knowledge of the primary source strength is not
required and use can be made of the waveform synthesis techniques developed by
Chaplin [6].

2. THE MINIMUM POWER OUTPUT OF A PAIR OF MONOPOLE SOURCES

Consider a pair of simple sources, separated by a distance r, and each having a

w
harmonic time dependence of the form e:J t. Assume the "primary" source has a
known fixed complex strength (volume velocity) qp whilst the "secondary"
source has a variable complex strength 9 The total sound power output

of the source combination can be written as
=1 * * (D
ne RE{(ppp v pps} BT (b5 * Psp) 3

where Ppp and Pps are the pressures produced at the primary source by the

primary source and secondary source respectively. The pressures P and P
ss s

D
are analagously defined. These pressures can in turn be related to the source
strengths via the appropriate complex impedance. Thus P =2z qp and

. ppP PP
Pps = Zpsqs and so forth. Note that the principle of reciprocity (which
applies under a wide range of conditions [7]) shows that Zp =2 .
s sp
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Equation (1) can be manipulated into the following form

W= * A v ¥ *
g A g *q b+ b qg * ¢ (2)
where use of the principle of reciprocity enables the constants in this

equation to be written as A =% Re{z_}, b =% rRe{z }q and
ss ps’Ip

c o=k Re{zpp}|qplz. This latter quantity is the power output wp that would be

produced by the primary source in the absence of the secondary source. The
important feature of this equation is that it is a real quadratic function of
the complex secondary source strength g . The gquadratic nature of this
equation can be further emphasised by eXpressing it in terms of the real and
imaginary parts of the secondary source strength. Thus

2 2 "
Wo=Aqp + 2bpd p *Adgp + Zbyq  + e 3
where qq = Re{qs}, dgp = Im{qs} and bR = Re{b}, bI = Im{b}.
Figure 1l shows a plot of the function W against the variables qu and 9y
The value of W is defined by a surface whose height'above the [qu' qSI) plane
is determined for each particular combination of 4R and g1 For a non-zero

source separation distance 'r', W is a positive definite quadratic function of
the variables g and 91 (i.e. W>O for all possible combinations of non-zero

*SR
values of qSR and qSI). Furthermore, the function W will have a unigue global

minimum. That is there is only one particular combination of the variables
qu and dgp which defines the minimm value of W. This corresponds to the

bottom of the "bowl" shaped surface illustrated in Figure 1. Thus there is

W Figure 1. The total sound power output
of the source combination as a function
of the real and imaginery parts of the
secondary source strength.
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one particular complex value of the (modulus and phase) of the source strength
ag which minimises the total power output. This complex source strength is

given when the derivative of W with respect to both ep and Qg is equal
to zero.  This criterion is satisfied if

=0 (4).

Use of this result and equation (3) results directly in the solution for the
optimal secondary source strength q ° which minimises the total power output
of the source pair. This is given by

Qg = -A b (5)
and the corresponding minimum value of power radiated, W_, is found by sub-
stitution of this result into equation (2), which yields

Wo=c - b*ab. . 6)
Note that equation (5) relates the optimal complex secondary source strength
to the complex primary source strength. Now consider the case where the two
moncpoles are situated in.a free field. Firstly observe that the complex
impedance relating the strength of point simple source to the pressure at a
distance r away can be written as

2 N
® po sin kr 4+ 4 808 kx
4wc° kr J ‘kr

where k = m/co and Por © define the density and sound speed of the medium.
Thus, since (sin kr/kr) = 1 "as r = 0, we have Re{Zss} = (m2p°/4wa6) and.

Re{Zps} = (wzoo/4ﬂco) {sin kr/kr) which enables equation (5) to be written as

o = - [sin kr] , -

SO kx qp .

Since (sin kr/kr) is real then the optimal secondary source strength must be
T out of phase (or in phase) with the primary source strength in order to
minimise the total power output (a result also deduced by Ffowcs Williams [8]).
Note, however, that the magnitude of the optimal secondary source strength is
dependent on the source separation'distance relative to the wavelength at the
frequency of interest. It is also useful to compare the minimum value of
power radiated wb‘ with the power Wp radiated by the primary source alone

Division of equation (6) by WP results in

- , 3 . 2 ‘
wo/wp =1 - (sin kr/kr) . (8)

-
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The corresponding fractional reduction in sound power output is plotted in
Figure 2. This clearly demonstrates that no appreciable reduction in source
power output can be achieved if the secondary source is separated from the
primary source by a distance which exceeds half a wavelength at the frequency
of interest.

10 [

lOloglo ﬁE (dB) {
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(x=r/2) (r=\)  kr

Figure 2. The maximum reduction in total sound power radiated as a function
of normalised primary/secondary source separation distance.

3. THE MINIMUM POWER OUTPUT OF A NUMBER OF MONOPOLE SOURCES

It will now be demonstrated that the abové analysis can be naturally extended
to deal with an arbitrary number of both "primary" and "secondary" simple
sources. The total power output of these sources can be written as

*

- T % , T (9)
W= drellp tp )t (Rgg *Bgy) 4]
where Sp is the vector of complex primary source strengths and gg is the

vector of complex secondary source strengths. The vectors Epp and Eps
define the pressures produced at the primary sources by the primary sources

and secondary sources respectively and similarly for Bss and gsp. Note that

the symbol T denotes the transpose of a vector. The vectors of complex
pressures can be related to the complex source strength vectors via complex

impedance matrices. Thus P =2 and P =2 and so forth. The
® TS Zpp T Sppdp AN Zps T Spsds
principle of reciprocity can again be used and in this instance it follows

and Zg4 are square symmetric (ZT = 2T = gss) and

that the matrices Z Z_
2, “pp p’ “ss

P
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also that gps = g:p. Equation (9) can be manipulated into the form

H
Weglag +aib g +e (10)

Where the relationships deduced .from the principle of reciprocity can be used
to show that the matrix A is given by &Re{gss}, the vector b is given by

Y Re{gsp}gp and the scalar constant € is gg (% Re{gpp})gp.

Note that the symbol H denotes the complex conjugate of a vector transpose
%*

T . R
(i.e. qi = (gs) ). The scalar constant ¢ in this case is equal to Wo' the

total net power radiated by the collection of primary sources in the absence
of any secondary sources. The analogy between equation (10) and equation (2)
is clear, the latter of course being a special case of the former. Further-
more, the properties of. equation (10) are also best described in terms of
those of equation (2). Firstly, equation (10) shows that the total power is
again a quadratic function of the strengths of the secondary sources. (This
can be demonstrated by expansion of equation (10) in terms of the real and
imaginery parts of the components of the secondaxy source strength vector, the
case of two secondary sources being the simplest example). The function W can
thus again be thought of as describing a bowl shaped surface similar to that
illustrated in Figure 1, but in this ‘case it is a hypersurface whose "height"
is defined as a function of the number of variables equal to twice the number
of secondary sources. Such a surface defies illustration except in the two
variable case shown in Figure 1. Secondly, however, and most importantly,
this surface again has a unique global minimum corresponding to the one
particular combination of secondary source strengths which defines the bottom
of the bowl. This minimum value is defined when the derivative of W with
respect to the real and imaginary parts of all the components of. the secondary
source strength vector is set equal to zero. This condition can be written as

W+ jaw_ =0 (11)
g'sR 3381

Differentiation of equation (10) then yields the solution for the optimal
vector of secondary source strengths which minimises the total power radiated.
This is given by :
_1 . ,
90 A L : (12)

Substitution of this result into equation (10) yields the corresponding
minimum value of W which is given by

W =¢ - HA—I

fe) ——

b (13)
The analogy of these results with those for the simple scalar case (equations
(5) and (6)) is clear. It is also interesting to compute the maximum reduction
in power output that can be achieved given a particular arrangement of primary
and secondary scurces. Consider the case of a single primary source and a
number of secondary sources. The optimal sector of secondary source strengths
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given by equation (12) in this case is

q  =- [Re{gss}]'lke{z (18)

}
<50 sp qP

where qp is the complex strength of the single primary source. This shows

that for minimum total power output, the secondary source strengths must all
be w out of phase (or in phase) with the primary source strength. The
corresponding ratio of the minimum power output WO to the power output wp of

the primary source alonme follows from.equation (13) (noting that gpp reduces
to a scalar); '

-1 - T -1
woo=1 [Re{zsp}] [Reiz 1]

W RelZ 7t
P PP
for the case of the primary and secondary sources in a free field this
evidently depends on only the relative locations of the sources and has been
evaluated for a number of secondary sources placed in an icosahedral array

surrounding a central primary source (Figure 3). Figure 4 shows the result

[Re{gsp}] ' (15)

Figure 3. The positions of the point secondary sources placed in an
icosahedral array surrounding the single point primary source
at the centre of the icosahedron.
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Figure 4. Maximum reductioms in total sound power radiated for the source
arrangement shown in Figure 3. 1 source, — ——2 sources,
veecs. b sources, — — — —= 6 sources, 8 sources,
-=——= 10 sources, — — — 12 sources.

of this calculation as a function of the distance of the secondary sources from
the primary source and the number of secondary sources placed in the positions
shown. (Note that several of the sources shown in Figure -3 were moved slightly
from the positions shown to avoid conditioning problems in the matrix
inversion). The conclusion drawn from Figure 3 is that substantial reductions
in sound power output are again only produced when all the secondary sources

are placed within half a wavelength of the primary source at the frequency of
interest. There are however, considerable gains to be had by increasing the
number of secondary sources placed within this distance from the primary source.

4. THE MINIMUM ACOUSTIC POTENTIAL ENERGY IN AN ENCLOSURE

It will now be demonstrated that the acoustic potential emergy in an enclosed
sound field can be expressed as a positive definite quadratic function of the
complex strengths of a number of secondary sources introduced into the
enclosure. The acoustic potential emergy is given by

- 2 ‘
B, = 1 { |p|“ av (18)
v
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and is thus the relevant quantity to minimise if global reductions are sought
in the magnitude of the pressure fluctuations in the sound field. The complex
pressure p can be expressed in terms of a truncated series of normal modes
having a vector of complex amplitudes a and a vector of real normalised
characteristic functions y such that p = yra. It follows from the ortho-
gonality property of the Tormal modes that equation (16) reduces to

E = v ala an
P 3 T
49000

Now note that each of the complex mode amplitudes can be considered to consist
of a contribution from some unspecified "primary" source distribution (due to
wall vibration or volume sources for example) plus the contribution from a
series of point secondary sources deliberately introduced to control the sound
field. Thus

~

a=a
- P
where gp is the vector of complex mode amplitudes produced by the primary

+ _BSS ‘ (18)

source distribution only and the matrix B quantifies the extent to which each
mode is excited by each secondary source.Combination of equations (17) and
(18) can be written in the now familiar quadratic form

= B H H
Ep "848, +q, b *hg *e 19

where in this case the matrix A = (V/Apocoz)gﬁg, the vector b = [4p°c02)§?§p

and the scalar constant ¢ = (V/Apocoz] Egép which is Epp’ the acoustic
potential energy in the enclosure due to the primary source alone. The
utility of this expression again stems from .the fact that this function has a
unique global minimum, and that for a given primary source distribution and a
given number and location of secondary sources, there is a unique combination
of secondary source strengths which minimises this function. It therefore
provides an ideal framework for more detailed consideration of what reductioms
are possible in principle to achieve by way of the active control of the sound
levels in an enclosure. This analysis has been used Eﬂ to deduce the
- reductions that are possible for the particular case of a single point primary
source surrounded by a number of point secondary sources in an enclosure, when
the wavelength at the frequency of interest is much shorter than the dimensions
of the enclosure. That is, at the frequency of interest, there is a high
density of acoustic modes contributing to the sound field. It is shown [] in
this case that the ratio of the minimum value of acoustic potential energy,
Epo’ to that produced by the primary source alomne (Epp)’ is predicted exactly

by equation (15) above. That is-

Epg =W : (20)
E W
PP P

and the reductions in the acoustic potential energy in the enclosure are

52 M TN UA ALl "™ s M 4O
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exactly equal to the possible reductions in the net source power output in

the free field case. This is not surprising in view of the inherent relation-—
ship between the source power output and the energy of the enclosed sound
field in the high frequency limit. Equivalent conclusions thus also result
regarding the effectiveness of the relative locations of primary and secondary
sources. This analysis remains to be applied to the case of the more compli-
cated "primary" source distributions associated with problems of practical
interest. However, some other interesting conclusions can be drawn from
consideration of enclosed sound fields excited at frequencies where there is a
low density of acoustic modes. :

5. CONCLUSIONS

A theory has been presented which uses the techniques of optimisation for the
analysis of various problems associated with the active control of sound.

The theory assumes a perfect prior knowledge of the strength of the primary
source distribution and thus enables an unequivocal deduction of the "best
possible reduction" that can be achieved by active techniques. The application
of the theory to the case of a single point primary source has shown that
substantial reductions in the net acoustic power radiated cao only be achieved
provided. secondary sources axe placed within a distance of half a wavelength
at the frequency of interest. Tdenitical conclusions result regarding the
reductions in the acoustic potential energy that can be achieved in the case
of a point primary source exciting an enclosed sound field having a high
density of normal modes.
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