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1 . INTRODUCTION

A useful means of analysing problem in the active control of sound and

vibration is provided by quadratic optimisation theory. This enables the
unambiguous quantification of the degree to much various cost functions (such

as acoustic squared pressure; power or energy) can be reduced by the action of

secondary sources. This approach uses ananalysis in the frequency domain

which has proved extremely useful in the treatment of problems such as the

active control of enclosed sound fields and the active suppression and

absorption of acoustic radiation. A summary of this approach and its
application to several examples is presented in reference [1]. The major,

well—recognised, drawback to this method of analysis is that there is no

constraint on the causality of the solutions produced. Thus, in many

instances in order to achieve optimal results, secondary sources must produce

outputs in anticipation of primary source outputs. This approach cannot
therefore be used with any generality for treating practical problems
involving the control of random sound fields.

The work presented here aims to complement this frequency domain theory with a
formulation in the time domain which does allow the constraint of causality to

be imposed upon the action of the secondary sources. The formulation used

does not, however. enable results to be deduced as easily as those deduced by

working in the frequency domain. The approach adopted is based on the

classical techniques of linear estimation theory and results in the derivation
of a Hiener-sopf integral equation which must be satisfied by the impulse
response of the optimal causal controller. The derivation of this equation

is presented below for the partican problem posed by the feed-forward
control of random sound fields. some comments are firstly made regarding the

general problem formulation and then a simple example is presented for the use

of the technique men the integral equation can be solved analytically. The
example demonstrates the importance of the statistical predictability of the

sound field being dealt with and its influence on the maximum achievable
performance limits of active control systems dealing with random sounds.

Z. FORMULATION OF THE mm]: OPTIMAL FIL‘I‘ERING PROBLEM

Figure 1 is a bloc): diagram representation of the general feed—forward active
control problem. we assume that there are P primary sources. whose sound
fields are detected by Kdetection sensors. These signals constitute the

elements of the vector )_((t) Which pass through a matrix Q of filters whose
output vector y(t) is fed to H secondary sources. The possibility of these

output signals being detected by the detection sensors is represented by the

matrix l_7 of feedback filters. The secondary sources produce signals —g(t) at
L error sensors. The primary sources also produce signals 90-.) at the I. error
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sensors. The interference of the primary and secondary source fields produces

a vector en.) of error signals. He can allow for the contamination of the

signals )_¢(t) and g(t) by the inclusion of noise signals gdt) and gin). The

problem is to deter-mine the matrix gwhich minimises a weighted sum of squared

error signals. This problem has been dealt with by using an analysis in the

frequency domain [2] but this of course hasno constraint on the causality of

the elements of the matrix Q. Here we attempt to determine the elements of

this matrix when they are constrained to be causal filters and we seek to

minimise the expected value of the weighted sum of squared error time

histories .

Firstly consider the problem of the feedback represented by the matrix 5.
The approach we shall take is to formulate the problem in terms of the matrix

)1 of filters which is formed from the combination of g and 1:. He seek to

determine the elements of g which minimise the required cost function such

that the problem reduces to that illustrated in Figure 2. Having determined

the optimal causal value of g, given by ED. we can then proceed to determine

the optimal value of g using manipulations in the frequency domain. This is

illustrated in Figure 3 which shows the relationship between the optimal g,

and the filters 50 and g. If g, is causal, and since in any physical

problem _P must be causal. then the filter go must be causal. This does not,

however. guarantee the stability of go and in any practical circumstances this

will have to be ensured by the elimination of the destabilising influence of z

(by, for example, the use of directional detection sensors and directionei

secondary sources ) .

He can now show that the problem of determining 5° can be cast in the form of

a classical estimation problem. This is most easily accomplished by using the

property of linear systems that the output produced by two systems in series

is the same for a given input even ifthe order of the operation of the

systems is reversed. Figure 4 summarises the approach that we takehere.

Thus the signal produced at the l'th error sensor is written in terms of the

outputs of the elements of the matrix !_1. The Justification for this reversal

of the transfer functions in the block diagram of Figure 2 is given by working

in the frequency domain. Thus we express the signals 2 and g as

2:55 5:92 (1)

where thesecan be written in terms of the columns fix of g and the rows 95"

of the matrix r_:, such that

when: “his. é= 2th (2)

Now considering the signal at the' l'th error sensor shows that this can be

written as

as = 2212 = sflmm + Dz“: Exxx) m
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and since this is a scalar, we can transpose each of the contributions in
equation (3) to give

at = L‘uTSIXx + DrTSExz mTSRKx (4)

He can thus express the signal Q, in terms of the vector h comprising the

columns of !_i and the vector 51, Where we thus define

d] = [11.53, D = n E! = Six: (5)

91":

 

Snxx

This then demonstrates that the expression for the signal éfit) can be written
in terms of a convolution of the vector of signals rut) with the vector of
causally constrained impulse responses )_1(t) such that

W

cur) = I nflnmct — nmn (e)
o

where mt) = o for t< o. The principle of transfer function reversal

described here was used in reference [3]. In that case the signals rmk were

referred to as "filtered reference signals" and we shall adopt the same
nomenclature here. '

3. THE DERIVATIDN O? A HIENER-HDPP INTEGRAL EQUATION

We shall now demonstrate that formulating the problem in this way enables the

derivation of an integral equation which must be satisfied by the optimal
value of the vector of impulse responses h(t) which minimises are chosen cost
function. The cost function can be expressed as

L

J = arsT(t)gg(t)J = c was“) - 6mm (7)
[=1

where g is a diagonal matrix of weighting factors whose elements are wg.
Although it is clear that in the case of sound field control we can interpret

the error signals gt) as, for example. the pressures produced at a number of

microphones, it can also be shown that problem of. for example, minimising

power and energy can also be formulated in this way. In order to deduce the

optimal value of Mt) Which minimises this function. we follow the standard
technique presented for the scalar case in reference [4]. A full description

of the derivation is given in the Appendix. one proceeds by first

substituting equation (5) into equation (7) to produce an expression for J in

terms of the impulse response vector 7_1( 11). One then assumes that m T‘) can

be expressed as the sum of an optimal value 130(11) plus another arbitrary

vector of impulse responses ha 1") such that

M13) = Doha) 4' éfldn) (5)
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where e is an arbitrary real parameter. The problem then reduces to
demonstrating that J is increased above its minimum value J, for any choice of
the parameter e and the impulse response vector fight). As shown in the

Appendix, a necessary and sufficient condition for this to be true isgiven by

a.
.EdrU'x) - I sum - madman = o v. > o (s)

0

where the vector of cross correlations fiafl 1’1) and the matrix ofauto-

correlations 13:511 — 7;) are given by

L

E01471) = E VIENDlt)£l("- ' 7;”
1:1

mm — v.) = "mm: — mzflt - m)
l 1

Equation (9) is the principal result of this paper. Implicit in the

derivation is that the random signals considered are stationary and that the
inpulse response 11(1'.) is causal. i.e., M13) = 0 for 'rl > o. It is also

shown in the Appendix that choosing the optimal value of the impulse response

vector which satisfies equation (5) results in the minimum Value of the cost

function given by

a,
Jo = PdaW) — I nflmmmman (12)

O

L

where Foam) = E ugE[d.=(t)]. Note that equation (12) can also be

1:].

written in the form

L:

‘70 = Roam) - E VIEIdn(t)ano(t)l- (1:)
l=l

Determination of the optimal vector of impulse response functions thus reduces

to the solution of the matrix Wiener—Hopi integral equation given by equation

(9). As we shall show below in the single channel case, analytical techniques
can be used to solve this equation in some cases although in the multi—channel

case numerical methods will generally be necessary for the solution to the

equation. Note that one such numerical method is provided by Elliott's

stochastic gradient algorithm presented in reference [3]. The extension of

this algorithm to the case where multiple primary sources are present follows

easily from the above formulation. '

592 Proc.l.O.A. Vol 10 Pan 2 (1986) 
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4. A SINFLE (JEWEL mm; THE HINIHISATION O!" m" SQUAREDVACOUSI'IC

PRESSURE

As an illustration of the solution to the Viener-Hopf equation. we consider

the problem depicted in Figure 5. This is the very simple active control

problem of minimising the squared pressure at a radial distance :1, from a

primary monopole source of strength qp(t) using a secondary source of strength
q3(t) where rs represents the radial distance from the semndary source to the

observation point. The equivalent block diagram of the problem is shown in

Figure 5(b) and in Figure 5(c) the problem is depicted with the transfer

functions I! and c reversed. thus enabling the definition of the filtered

reference signal r(t). It follows automatically that the Wiener—Hopi equation
that must' be solved is given by

a

(2)3954.“ — 5933—55) + I awn; - Tz)h°(‘r:)d1'z = o n > o (is)
0

where Rpp is the autocorrelation function of the primary source strength

time derivative.

The solution to equation (19) is crucially dependent upon the value of the

time difference ((rp — r3)/c°) which quantifies the difference in the

propagation time between waves travelling to the field point from the primary

and secondary sources respectively. When the field point is at a distance

from the primary source which is greater than or equal to the distance from

the secondary source (i.e., rP 2 r5) then-we have the solution given by

ham) = -(£')6('rz - En-'—"‘). rp a :3 us)rP c°

Thus the secondary source output is simply an inverted delayed version of the

primary source output weighted by a factor accounting for spherical

spreading. This result is not surprising. However, When the field point is

further from the secondary source than the primary source, i.e., r, ) rp then

it is clear that the secondary source must produce outputs prior to the

primary source if cancellation of the field is to be achieved. 'mus if n =

Irp - ral/co we see that equation (14) can be written as

n
(gmppflx + n) + I Rpp(1',, - rand-rt)”: = o 1-1 » o (16)

O

The problem has now reduced to the "pure prediction problem" or producing an

optimal prediction of the output of a system at some time n in the future

given the statistical properties of the signal. The solution to this type of

prohl is well-established (see reference [5] for full details) and can be

easily written down provided that in this case the primary source strength

time derivative qp(t) can be expressed as the output of some linear "shaping"

filter whose input is white noise. If the transfer function and impulse

Proc.l.O.A. Vol 10 Part 2 (1988) 593
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response of this filter are given by Y1(s) and yfit) respectively, \vlhere s is

the Laplace variable. then the transfer function of the optimal predictor

whose impulse response satisfies equation (16) is given by

30(9) = -(§‘)v.'ws)vz(s) (17)
P

In reference [6] full details are presented of the calculation of this

transfer function when the shaping filter is of second order and has the form

s

s2 + 2£uns + on: (18)15(5) =

(A similar example has also been presented by Joseph at at [7].) The

structure of the transfer function of the optimal filter that is

produced is given by

How) = (gum. + a) (19)
P

Where A = (e—nflnnlma )wnlsinmon, B = (e_£m-"n/m‘I )(uocosuan - transinugn)

and_ (do = wm’U- ‘ 5:)-

Use of this result and equation (13) enables the expression for the minimum mean

squared pressure to be written as '

.7 {nunn39; = I— T:— [mnzsinzuon + (uocostn - [unsinuom‘] (20)
p 0

Were Jpp defines the mean squared pressure due to the primary source only.

A plotof Jo/Jpp as a function of c and the parameter‘onn is shown in

Figure 6. Note that the latter parameter can be written as (217er - r5! )/)\n

and thus guantifies the difference in path length between the primary and

secondary sources to the field point considered relative to the acoustic

wavelength An at the natural frequency of the second order shaping filter.

Thus, as one would expect, the greatest cancellation of the sound fieldis

produced When the shaping filter is lightly damped and When the path length

difference to the field point is small compared to the acoustic wavelength at

the filter's natural frequency.

5 . CONCLUS IONS

The work presented here formulates the problem of determining the optimal

controller for stationary random sound fields when the constraint of causality

is introduced. The problem reduces to a Wiener-HOPE integral equation that

must be satisfied by the optimal vector of filter impulse responses. A simple

emple is presented for the single channel case Which demonstrates that the

degree of cancellation of a random sound field may in some Circumstances be

594 Proc.l.O.A. Vol 10 Pan 2 (1988)
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dependent on its statistical predictability. The extension of these

techniques to determine how other problem such as the minimisation of

acoustic power output [a] and acoustic potential energy [9] produces some
further interesting results.
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APPENDIX

we wish to minimise the quadratic cost function consisting of the

weighted sum of time averaged error signals, which for stationary

ergodic random pmcesea can be written as

L

.r = E[_a_T(t)!§(t)] = E unatam) - 6mm] (Al)
[=1

where g is the diagonal matrix of weighting factors ‘1’. Note that J can

be written as

r.
.7 = : V'Jg (A2)

1:1 ‘

where

a: = snout) — autn‘l

Substituting equation (6) of the main text EnnDIEB the i'th contribution to

the quadratic cost function to be written as

w

J. = mam) — I Emma - mama (As)
0

which can be expanded to give

w
J: = main) - 201m! 9"”;an - man

0

a n '

+ I I Emma — my?“ - mmrnandrzl (M)
O 0

Note that use has been made of 5T(rz)£'(t — 1,) =“Tu: - 1-I mug) (since the
term is a scalar) and 1-2 has been introduced as an additional time variable.
use of the expectation operator then gives

no

a: = Mano) - 2f nTtmzmmwn
o

a G

+ l l Emir-95",“, - 1-,)y1-lm1-1a1-z (A5)
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liners the correlation functions aredefined by

nadlm) = mama], Edrfln) = EIGNUEKC - TH].
(A6)

5m = sum - my?“ - m]

Now we can add each of the 1.. terms of this form to give the expression for

the net cost function which can therefore be written as

m

J = Roam) - 2! nTmmazunan
D

D D

+ l l n’<n>§zr(n - 72’!(Tz)ariarz (M)

where we have defined the weighted sums

1. L

Foam) = E "Wadfloh Bortn) = E "REGINTIL
1:1 [=1

L

Err"; ' Ta) = E Vnfirn‘n - 7;) (A8)
l=l

we can now derive the integral equation which must be satisfied by the optimal
vector of filters BOWL) which minimises the cost function J. The technique
follows that presented in reference [4] Which deals with the scalar case. we

thus assum that

3‘71): DO(TA) 4' ‘Dd'f'fl (A?)

where e is an arbitrary real parameter. This expression is substituted into
equation (A7) to.givs

B

a = new) - 2 (717(1‘) + chefl‘gdrunon
o ‘0

W 0

+ J Img‘m) + enmnnsnm - mmam) + swunanan
O 0 (Am)

Expanding this expression and collecting terms in powers of e gives

'Proc.l.O.A. Vol 10 Pan 2 (1988) 597
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m a) W

a = Edam) - 2I EZ<T1>Bdr(T;)dU + I I n’gmmzrm - szo‘szTxaTz
O D O

W U D

+ et-zI,nJm>sar<man + I I nflmsum - mama
O 0 O   

+ neTt n )sz n '72 ) mom )6vasz

D N

+ e=zI I neTmLan - runamandrz) (m)

Now note that we can write the term

   

  

non ’51::er - Tz)De(Ta) = ne’nnsnm - whom) uuz)

    

   
   

   

    

    

since it: is a scalar (and equal to its transpose) and since the matrix

5"“; — 7,) is symmetric. Also. since 5"”) — 1") =Burr, - 7‘). then the

integrated value of this term is symmetric to interchange of n and 1,. This

allows equation (311) to be written as '

D

a = Roam) - z nTmmartman
0‘0

m D

+ I I airman”. - T:)Ho(7z)d1'1d71
O 0

w w
- ZetI DeT(7i)(BdrlTx) - I sum - muotmamam

O

W m

+ e=rI I barman“; — msgmmndm (A13)
0 a

This relationship can be expressed in the form ~

J = JO 4- AJ (31;)

smart: J° denotes the minimum value of J produced \vlhen m 1") = 13.,(1'1) and

Which is thus given by

Proc,l.O.A. Vol 10 Pan 2 (1988) 
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U

do = Roam) — 2f gymsazmwn
0

W m

v + 1 l 23:71).de r. — mnemmnan (us)
Now if 11“ 1-1) is the optimal filter vector, then A.) must be greater than or
equal to zero for all possible allowed values of new“) and all values of e at
a. we thus needto establish the conditions under which A.) > o. Firstly
note that the second term constituting A7 (the last term of equation (M3))
can be written as

I: a)

1: mu] oflmmr — man F1 (M6)
1:1 0

and is thus the weighted sum of the expectations of a sflared time history.
lmil: will certainly be greater than or equal to zero for all choices of c and
Elna) provided all the weighting factors u, are greater than or equal to
zero. (It may also be possible for this to be greater than or equal to zero
for other choices of weighting factors). Hauever. the first term
constituting AT (the fourth tam in equation (M3)) shows that there is a
range of vlues of s, which for a given 347;). can cause (5.] to become
negative. In particular a.) r o for ‘

W I?

2] Mums:an — J' RrrU'i — nmammman
0q( —_————_—_.__

m .

rJ He!" "'1 )Brfi Ti ‘ 7': met": )dfi‘":
0 O

 

Thus there is always a value of s that will make A.) negative whether the
numerator of this expression is positive or negative (since s can be positive
or negative). One therefore concludes that M can only be greater than or
equal to zero for any values of e and E4 11) provided

W D

[neTmuzadm - I sum - Tz)flo(1’r)d"z)d"i = 0 me)
D O

A necessary and sufficient condition for this to hold for any value of
new") is that

D

BdrU'i) — Isum - mnommn = o n > 0 ms)
0

This defines the necessary and sufficient condition for h“ n)to constitute
the optimal filter vector which minimises the chosen cost function. Finally
note that this also enables a convenient relationship to be written for the

Proc.l.O.A. Vol 10 Pan 2 (1988) 599  
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minimum value of J. From equation (A15), this can be written as

W

30 = Roam - [113mmer m.
0

a) D

-l gunman) -j sum _T1)DD(T£ when (no)
0

and since g“ Tl) must satisfy equation (A19) then

’5 =Roam - [unfitmamman (A21)
0

A {unmet alternative means of wnting this which is sametimee useful is given

by recognising that

LI

Jo = Ream) - I non) lzlwgstammu - mm,
o =

which can thus be written as

L w
an = Maw) - I: WIEICE(C)I n°T(T,_)El(t - nun]

2:; o

The convolutian term results in the optimal value of the signal afit)

which can be written as than.) and therefore enables an to be written

I!

L

Jc = F’dan’) - E Wildfltflinoflin
[=1

Proc.l.O.A. Vol 10 Pan 2 (1988) 
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P primary L

Signals g error
signals     

   
   K delected M signals to

. signals secondary
figure 1. sources

The block diagram representation of the general feedforward

active control problem.
The signals

Itiassumedthatnanandxap.

5‘ and 5, represent contaminating noiSE.

  

Figure 2. Summary of the optimal filtering problem. we wish to

determine the optimal filter g0 Which minimises
E[§T(t)! g(t)) where g is a diagonal matrix ofweighting
factors.

Figure 3. Block diagram representation of the optimal form of the
filter 9 deduced in the frequency domain after determination
of the optimal causal filter 3,. Note that if 110 is causal,
since 2 1s causal. then go is causal (the stability of 5°
is not guaranteed). —
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aw) = Janun 4 mm

Figure 4. Equivalent block diagram shaving the generation at“ the signal

at the l'th error sensor by the secondary saurces men the

transfer functions E and <_: are reversed.
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9(1) = Pp“) + 95“)

J = E (p (I) + p (1))2
dpm I p s ]

   
a single primary source with a single secondary source,
(a) showing primary and secondary sources having source

strength tune derivatives spa) and 515(t) respectively,
(b) the equivalent block dxagram, (C) the sleek diagram

ill!!! the transfer functions H and C reversed.

\

\
Figure 5. The minimisation of the far field acoustic pressuredue to ‘

\
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