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1. INTRODUCTICN

A useful means of analysing problems in the active control of sound and
vibration is provided by quadratic optimisation theory. This enables the
unampiguous quantification of the degree to which various cost functions (such
as acoustic squared pressure, power Or energy) can be reduced by the action of
pecondary BOUICEs. This approach uses an analysis in the frequency domain
which has proved extremely useful in the treatment of problems such as the
active control of enclecsed sound fields and the active suppression and
absorption cof acoustic radiation. A summary of this approach and its
application to several examples is presented in reference [1]. The major,
well-recognised, drawback to this method of analysis is that there ie no
conetraint on the causality of the solutions produced, Thusa, in many
instances in order tc achieve optimal results, secondary sources must produce
outputa in anticipation of primary source outputs. This approach cannot
therefore be used with any generality for treating practical problems
involving the control of random sound fielda.

The work presented here aims to complement this frequency domain theory with a
formulation in the time domain which does allow the constraint of causality to
be imposed upon the action of the secondary sources. The formulation used
does not, however, enable results to be deduced as easily as those deduced by
working in the freguency domain. The approach adopted is based on the
clasgical technigques of linear estimation theory and results in the derivation
of a Wiepner-Ropf integral equation which mugt be satisfied by the impulse
response of the optimal causal controller, The derivation of this equation
is presented below for the particular problem posed by the feed-forward
contrel of random sound fields. Some comments are firstly made regarding the
general problem formulation and then a simple example is presented for the use
of the technigue when the integral equation can be solved analytically, The
example demonstrates the importance of the statistical predictability of the
sound field being dealt with and its influence on the maximum achievable
performance limits of active control systems dealing with random sounds,

2, FORMULATION OF THE GENERAL OFTIMAL FILTERING PROBLEM

Figure 1 ia a block diagram representation of the general feed-forward active
control problem. We assume that there are P primary sources, whose sound
fields are detected by K detection sensors. These signale constitute the
elements of the vector x(t) which pass through a matrix G of filters whose
output vector y{t) is fed to M secondary sources. The possibility of these
output pignale being detected by the detecticn senscrs is represented by the
matrix F of feedback filters. The secondary sources produce signale —d(t) at
L error senscrs. The primary sources aleso produce signals 4a(t) at the L error
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gensors. The interference of the primary and secondary @ource fielde produces
a vector e(t) of error signals. We can allow for the contamination of the
signals x(t) and d{t) by the inclusion of noise signals p,(t) and n,(t). The
problem ie to determine the matrix ¢ which minimises a weighted sum of squared
error signals. This problem has been dealt with by ueing an analysis in the
frequency demain [2] but this of course has no constraint on the causality of
the elements of the matrix G. Here we attempt to determine the elemente of
this matrix when they are constrained to be causal filters and we seek to
minimise the expected value of the weighted sum of squared error time
histories.

Firstly consider the problem of the feedback represented by the matrix P.

The approach we shall take is to formulate the problem in terms of the matrix
E of filters which is formed from the combination of & and F. We geek to
determine the elements of A which minimise the required cost function such
that the problem reducea te that illustrated in Figure 2. Having determined
the optimal causal value of H, given by H,. we can then proceed to determine
the optimal value of § using manipulations in the frequency domain. This is
jllustrated in Figure 3 which shows the relationship between the optimal G,
and the filters H, and P. If H, i1s causal, and since in any physical
procblem P must be causal, then the filter G, must be causal. This does not,
however, guarantee the stability of G, and in any practical circumstances this
will have to be ensured by the elimination of the destabilising influence of P
(by, for example, the use of directional detection seneors and directional
secondary sources}.

We can now show that the prcblem of determining H, can be cast in the form of
a claspical estimation problem. This ia most easily accomplished by ueing the
property of linear systema that the output produced by two syatema in seriea
is the same for a given input even 1f the crder of the operation of the
systems is reversed. Figure 4 summarises the approach that we take here.
Thus the signal produced at the 2'th error sensor ia written in terms of the
outputs of the elements of the matrix H. The justification for this reversal
of the transfer functions in the block diagram of Figure 2 is given by working
in the freguency domain. Thus we expresa the signals y and 4 as

y=8x% d=cy (1)
whera these can be written in terms of the columns My of B and the rows cpT
of the matrix C, such that .

y=[hy by ... glx, &= [e,Ty (2)

Now considering the signal at the £'th error sensor shows that thias can be
written as

dg = Ty = ¢pTthyX, + NaXa «vov hy¥g) (3)
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and aince_' this is a scalar, we can transpose each of the contributions in
equation {3) to give
dg = h,Tepx, + h,Tepx, ... mxTeexx (4}

We can thus express the signal ég in terms of the vector h comprising the
columng of H and the vector rp, where we thus define

4 = Wz, h=

: Lp = [Se¥2 (5)

Cpxp

CeXK

This then demonstrates that the expression for the signal ég(t) can be written
in terms of a convglution of the vector of gignals Iy(t) with the vector of
causally constrained impulse responsgeg h{t) such that

N o
ap(t) = _[ hTtrrp(t - 0ar, (6)
(a3

vwhere h{t}) =0 for t< 0, The principle of transfer function reversal
described here was used in reference [3]. In that case the signals rp;. were
referred to as "filtered reference signals™ and we shall adopt the same
nomenclature here. ’

3. THE DERIVATION OF A WIENER-HOPF INTEGRAL EQUATION

we shall now demonstrate that formulating the problem in this way enables the
derivation of an integral equation which must be satisfied by the optimal
value of the vector of impulse responses h(t) which minimises are chosen cost
function. The cost function can be expressed as

L
7= e[eT(tWe(t)] = [ wpldp(t) - dg(t)Z  (7)
=1

where W is a diagonal matrix of weighting factors whose elemente are wyp,
Although it 1s clear that in the case of sound field control we can interpret
the error signals e(t) as, for example, the pressures produced at a number of
microphones, it can alsc be shown that problems of, for example, minimising
power and energy can also be formulated in this way. In order to deduce the
optimal value of h(t) which minimises this function, we follow the standard
technique presented for the scalar case in reference [4]. A full description
of the derivation is giwven in the Appendix, One proceeds by first
substituting equation (6) into equation {(7) to produce an expression for J in
terms of the impulse response vector h{T,). One then assumes that h{T,)} can
be expressed as the sum of an optimal value hy{T,) plus another arbitrary
vector of impulse responses h.(T,) such that

DT ) = hol{T;) + €he(Ty) (8)
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where « ims an arbitrary real parameter. The problem then reduces to
demcnstrating that J is increased above its minimum value J, for any choice of
the parameter e and the impulse response vector hg{T,). A shown in the
Appendix, a necessary and sufficient condition for this to be true is given by

o
Rar(7y) = [ Bep(T, = Tp0hol7a)ar, =0 7,5 0 (9
o

where the vector of cross correlatlons Ray(T,) and the matrix of auto-
correlations Rpp(T, — T,) are given by

L
Rar(7T,) = E wpE[dg{t)rp(t — T,1]
=1

L
Rrp(Ty = Tz) = [ weBlrplt - 70)rgT(t = ;)]
=1

Equation (9) is the principal result of this paper. Implicit in the
derivation is that the random signals considered are staticonary and that the
impulse response h(r,) is causal, l.e., h{r,) = 0 for r, > Q. It is also
shown in the Appendix that choosing the optimal value of the impulse response
vector which satisfies equation {(9) results in the minimum value of the cost

function given by

o
Jo = Raal®) = [ NoT(T )RralTider, (12)
L]

L

where Rga{0) = T wpE[dpZ(t)}]. Note that equation (12) can also be
2=1

written in the form

L
Jo = Raal0) — [ wiEldp(t)dpolt)]. (13)
=1

Determination of the optimal vector of impulse response functions thus reduces
to the solution of the matrix wiener—Hopf integral equation given by equation
{9). As we shall show below in the single channel case, analytical techniques
can ba used to solve this equation in some cases although in the multi-channel
case numerical methods will generally be necessary for the sclution to the
equation. Note that one such numerical method is provided by Elliott's
stochastic gradient algorithm presented in reference [3]. ‘The extension of
this algorithm to the case where multiple primary sources are present follows
easily from the above formulation.
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4. A SINGLE CHANNEL EXAMPLE; THE MINIMISATION OF MEAN SQUARED ACOUSTIC
PRESSURE

As an illustration of the solution to the ?iener-ﬂopf egquation, we consider
the problem depicted in Figure $§. This is the very simple active control
problem of minimising the squared pressure at a radial distance rp from a
primary monopole source of strength qplt) using a secondary source of strength
Qglt) where rp represente the radial distance from the secondary source to the
obgervation point. The equivalent block diagram of the problem is shown in
Pigure S(b) and in Figure S5(c) the problem is depicted with the transfer
functions B and C reversed, thus enadbling the definition of the filtered
reference signal r{t). It follows automatically that the Wiener-Ropf equation
that must be solved is given by

a—

-3
(lr':l’)nm;,(-r1 - 52‘-:-:—5‘1) + I Rpp(Ty - TeMg(Tg)aT, = 0 T, >0 (14)

where Rpp 18 the autocorrelation function of the primary source strength
time derivative,

The solution to equation (14) is crucially dependent upon the value of the
time difference ((Ip - I5l)/Cqs) which guantifies the difference in the
propagation time between waves travelling to the field point from the primary
and secondary sources respectively, When the field point is at a distance
from the primary source which is greater than or equal to the distance from
the secondary source (l.e., rp » rg) then we have the solution given by

ho(T2) = "Eﬂ)s("'z - o TIs), Ip » Ip {15)
p Co :

Thus the secondary source output is simply an inverted delayed version of the
primary scurce output weighted by a factor accounting for spherical

spreading. This result is not surprising. However, when the field point is
further from the secondary source than the primary source, l.e., [rp » rp then
it is clear that the secondary source must produce outputs prior to the
primary source if cancellation of the field is to be achieved. Thus if n =
Irp - Igl/c, we see that equation (13) can be written as

- ]
‘E‘:’Rpp(fx + )+ J Rpp(T, — ToMo(Ta)a7, =0 7, » O (16)
Q

The problem has now reduced to the "pure prediction problem® of proqueing an
optimal prediction of the output of a system at pome time n in the future

given the statietical properties of the signal. The ascluticon to this type of
problem is well-established {eee reference [5] for full details}) and can be
easily written down provided that in this case the primary source strength

time derivative qp(t) can be expressed as the output of some linear ~ghaping*
filter whose input ie white noise., If the transfer function and impulse
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response of this filter are given by Y,(s) and y,(t) respectively, where 3 is
the laplace variable, then the transfer function of the optimal predictor
whose impulse response satisfies equation (16) is given by

Ho(9) = —(Z2)Y,7%(5)¥5(8) (17)
P

In reference [6] full details are presented of the calculation of this
transfer function when the shaping filter is of second corder and has the form

B

8% ¥ 2fwps + wp® (18)

Y,(8) =

(A similar example has also been presented by Joseph et al [71.) The
structure of the transfer function of the optimal filter that is

produced is given by

Ho(8) = ‘EE)“V’ + B) (19
=)
where A = (& ““"M/u jupsinwgn, B = (e MMy Y wocoswen ~ EwpBinugn)
and wo = wn/(1 = €2).

Use of this result and equation (13) enables the expression for the minimum mean
squared pressure to be written as

—-2f{uwnn
Eﬂ....—.|_e

3 ™ [wp2sinZu,n + (waCoBugN — fuwn8inugn)®] (z0)

2

1

wnere Jpp defines the mean sguared pressure due to the primary source only.
A plot.of J,/Jpp as a function of ¢ and the parameter wpn is shown in

Pigure 6. Note that the latter parameter can be written as (2rirp = xg!l}/Ap
and thus guantifies the difference in path length between the primary and
secondary sources to the field point considered relative te the acoustic
wavelength Ap at the natural frequency of the second order shaping filter.
Thus, as one would expect, the greatest cancellation of the sound fleld is
produced when the shaping filter is lightly damped and when the path length
difference to the field point ia small compared to the acoustic wavelength at
the filter's natural frequency.

5. CONCLUSIONS

The work presented here formulates the problem of determining the optimal
controller for stationary random sound fields when the constraint of causality
i introduced. The problem reduces to a Wiener-Hopf integral equation that
must be satisfied by the optimal vector of filter impulse reaponses. A simple
example is presented for the single channel case which demonstrates that the
degree of cancellation of a random sound field may in some circumstances be
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dependent on its atatistical predictability. The extension of these
techniques to determine how other problems such as the minimisation of
acoustic power output [8] and acoustic potential energy (9] produces some
further interesting results.
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APPENDIX
We wish to minimise the quadratic cost function consistirig of the

weighted sum of time averaged erroxr signals, which for stationary
ergodic random procesea can be written as

L
T = E[eTir)vect)] = E wiE[dp(t) - @p(t))®] = (A1)
=1 )

where W is the diagonal matrix of weighting factors wy. Note that J can
be written as

L
J = L wpdp (R2)
=1 N ’

where
Jg = E[{dp{t) — dg(t))?]

Substituting equation (€) of the main text enables the #'th contribution %o
the quadratic cost function to be written as '

od
3¢ = EL(apce) - [ nT(rrgct - T,)er,)%) (A3)
o
vhich can be expanded to give

- -3
Jp = Ef{af(t) - za,(t)f nT(r, dzptt - 7,047,
[+

oo
+ [ [ WTerorace - Tonge - TR anan) (ae)
oo

Note that use has been made of D_T(r,_)gp(t -Tz) = rpT(t - Tz (r;) (8ince tha
term is a scalar) and T, has been introduced as an additicnal time variable.
Use of the expectation operator then gives

(=1}
3p = Raae(0) - 2 NN Rare(7, a7y
o

o @
+ l l nT(T, RypglT, = To)B(T, )T AT, (RS)
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whers the correlation functions are defined by
Raap(0) = E[dp2(t}], Rarg(T,) = E[dp(t)rp(t ~ 7,)].
{RE)
Rrre = E[Lg(t - 7LT(t = 72))

Now we can add each of the L terma of this form to give the expression for
the net cest function which can therefore be written as

[ -]
J = Raa(0) - 2f BT, )Rar(T, 0T,
o

o o
+ l[ l BT(T, Rep( Ty = T4 (T,)AT,67, (a7)

where we have defined the weighted sums

L L
Raa{0) = L[ wiRaap(0). Rar(Tyi) = L weRgqrp(T.).
=1 2=1
L
Rpp(Ty = Tz) = L WoRyrp(Ty = 7;) (A8)
=1

We can now derive the integral equation which must be satisfied by the optimal
vector of filters hy(T,) which minimises the cost function J, The technique
follows that presented in reference [4]) which deils with the scalar casa, We
thus asgume that

hit,) = {7} + ehel7,) (R9)

where ¢ is an arbitrary real parameter, This expression is substituted into
equation (A7) to.give

-]
3 = Raa(0) - 2 (WT(7,) + ehg)TRar(T,ar,
o

C
+ [ [Trey + neTITOIReR(Ty - T2I(NoTa) + eDelTy)IAT AT,
oo
(A10)

Expanding this expression and collecting terms in powers of « gives
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o (2 ]
= Raa(0) - 2| HTCrBar(72a7, + | [ WICTORer(Ty = Dol 7z ar 0,
=] Do

@ X o
+ el-2[ heToroRartroary + [ [ BoT(TORer( Ty = Tadhe(T2)
[s] o0

+ eT(7 Ryl Ty ~T2) . hol(72)d7,87,)

@ @
+ &* [l ![ heTCTy MBrr( Ty — Tp he(T AT, AT, ]

1

Now note that we can write the term
NoTUT RrrlTy = T2l T2) = DTUT Rer( Ty = T2 Mo(Ty) (a12)

pince it is a scalar (and equal to its transpose)} and since the matrix
Rep(™, — Tp) i symmetric. Also, since Ryp(T; = Tz) = Rrr(Tp — 7,), then the
integrated value of this term is symmetric to interchange of 'r_‘ and T,. This
allows equation (All) to be written as -

oo
= Raat©) - 2f WTCT.Rar(ry ATy
o
@ o
+ I _[ I‘.g( Ty YRer{ Ty — T2)hp(T)dT,d7,
a o

o -]
- 260 BeTtra XBaxtms) - [ Bertry - madhotraier,ar,)
o

L ‘
+ e[ [ BT(rORer(Ty - TahelTa)ATAT,)  (A13)
=2 ]

This relationship can be eXpressed in the form

I =T, + 87 (Al4)

where J, denotes the minimum value of J produced when h(7v,} = Bg(7,) and
which is thua given by
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m
3o = Raat©) - 2f BT(v, )Rar(Tyl8T,
Q

© o
S 1 l Dg( TeIRpp( Ty — ¥z )Po(T )7, 471, (Al1S5)

Now if ho(T,) 18 the optimal filter vector, then AJ must be greater than or
equal to zero for all possgible allowed values of hg(T,) and all values of ¢ &
0. We thus need to establish the conditions under which AJ » 0, Firstly
note that the second term constituting AJ (the last term of eguation (A13))
can be written ae

L L3
£ vigle| eneTrydzect - Ty3ar)7) (Al6)
=l [}

and 1s thus the weighted sum of the expectations of a squared time history.
Thia will certainly be greater than or egqual to zero for all choices of ¢ and
Rel(T,) provided all the weighting factors wp are greater than or equal to
zero. (It may also be posgible for this to be greater than or equal tc Zero
for other choices of weighting factors). Rowever, the first term
constituting AT (the fourth tarm in equation (Al13)) shows that there ig a
ranga of vliues of &, which for a given h.(T, ), can cause AJ toc become
negative. In particular AJ < O for ’

00 o
2f NeTr M RartTy) ~ [ Bertry - TodbotTadAT, YT,
0 o

(A17)

o .
r_[ NeT(Ty Rerl Ty - T dha(T,y)ar a7,
o"o

Thus there io always a value of ¢ that will make AJ negative whether the
numerator of this expressicn is positive or negative (since & can be positive
or negative). one therefore concludes that AJ can only ba greater than or
equal to zexo for any values of £ and h.(1,) provided

- J a
J BTN BartTe) - [ Rer(Ty - TadhotTa)ar 0ar, = 0 (Als)
=] (=]

A necessary and sufficient condition for this to hold for any value of
he(T,} 4a that
&
RBar(ts) = [ Ber(7, - TodhglradaT, =0 1,50 (Al9)
[
This defines the necessary and sufficient condition for hg{7,) to constitute

the optimal filter vector which minimises the chosen cost function, Finally
note that this also enables a convenient relationship to be written for the

Proc..O.A. Vol 10 Part 2 (1988)




Proceedings of The Institute of Acoustics

LINEAR LEAST SQUARES ESTIMATION PROBLEMS IN THE ACTIVE CONTROL OF STATIONARY
RANDOM SOUND FIELDS

minimum value of J. Prom equation (Al15), this can be written as

®
Jo = Rag(0) - J DE(TL)EGI{TL)G?L
o

-] o
-l BTe7, M Rar(7s) - [ Bro(Ts -TadholTs)aT;)eT,  (A20)
o

and since ho(T, ) must satisfy equation (A19) then

Jo = Raal®) - JFLOT(Tx)EdI(T;)de {A21)
o

A further alternative means of writing this which is sometimes useful is given
by recognising that

@ L
3o = Rea(0) = [ BoT(r) E weEldg(tIEQ(T — 7o),
o =

which can thus be written as

L @ .
Jo = Raa(®) - T ng[dg(t)J neT(T, drglt - 7,)a1,]
B=1 o .

The convolutlon term results in the optimal value of the signal dp(t)
which can be written ag djpo{t) and therefore enables J, to be written

as
L

J, = Raal0) = £ wiE[Qp(tpe(t)]
=1
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P primary R L
signals : d error
/ : A signals
2 35— mo H D2 2

AU, SO )
B G ] C
/a YT vy g
K detected ! E M signals to
: signals  teeeiaaoioon e : secondary
Figure 1. sources

The block diagram representation of the general feedforward
active control problem., It is assumed that L » M and K » P.
fhe signals n, and n, represent contaminating noise.

H Q . \E= g-
’)T v T (d -4

FPigure 2. Summary of the optimal filtering prcblem. We wish to
determine the optimal filter H, which minimises
E[g'r(t)_lg e(t)] whera W is a diagonal matrix of waighting
factore.

Figure 3. Block diagram representation of the optimal form of the
filter G deduced in the frequency domain after determination
of the optimal caueal filter H,. Note that if H, is causal,
since F ia causal, then G, is causal (the stability of G,
i3 not guaranteed). -
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Xy Gy iy H,
G lea Hy,
C:M Ir:m H;“
R Py fuz e
qz r;zz sz - al(t)
E Mz E
G : Hyz
Xy G, Mok | Hix
G Miak . oy
e o 5 w
Cin Rl d = d[nf_(mwt T Ty

FPigure 4. Equivalent block diagram showing the generation of the s:l.gﬁa].
at the t'th error gensor by the aecondary sources when the
transfer functions H and C are reversed.
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p{t) = pplt) + ps(t)
J = Etpp() + pstt))?]

A
0 s,
L 4nrp Bt - co) Ld{t) = pplt)
qpﬂ; €>—~ p(t)
| e r $do= -psit)
-hix) 41t0r5 Sit - Ef;) s
H C
Po‘ .. Ip
Po_ 5t - B 9 = Ty Bl )
] ) 4]’t|'p {t- Co 1
RO €>—~ p(1)
Po Lfe »|-h ]
4nrg it cc) ®
P r
ry = 4n°rsqp(t ) é)

Pigure 5. The minimisation of the far fileld acoustic pressure due to
a single primary source with a single secondary source;
(a) ehowing primary and secondary sources having Bource
atrength time derivativen n:'lp(t) and c'[s(t) reapectively,
(D) the equivalent block diagram, {<) the block diagram
with the transfer functions H and C reverded.
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